期刊文献+

具有较少非循环子群共轭类的有限群 被引量:2

Finite groups with few conjugacy classes of non-cyclic subgroups
原文传递
导出
摘要 设G是有限群,用δ(G)表示群G的非循环子群的共轭类数,πr(G)表示整除|G|的素因子的集合.本文主要研究满足条件δ(G)≤|π(G)|+1的有限群,得到这类群可解,并给出它们的同构分类进一步证明,δ(G)=|π(G)|+2的有限非可解群必同构于A_5或SL(2,5). Let G be a finite group and δ(G) denote the number of conjugacy classes of all non-cyclic subgroups of G.The symbol π(G) denotes the set of the prime divisors of |G|.In this paper,a group G is called δπ-group if δ(G)≤|π(G)| + 1.We show all δπ-groups are solvable.Furthermore,δπ-groups are classified completely and non-solvable groups with δ(G) = |π(G)| + 2 must be isomorphic to A5 or SL(2,5).
作者 孟伟 李世荣
出处 《中国科学:数学》 CSCD 北大核心 2014年第9期939-944,共6页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11361075 11361076 11171243和11201385)资助项目
关键词 非循环子群 共轭类 同构分类 non-cyclic subgroup conjugacy class isomorphism classification
  • 相关文献

参考文献9

  • 1Miller G A, Moreno H C. Nomabelian groups in which every subgroup is abelian. Trans Amer Math Soc, 1903, 4 398-404.
  • 2Li S R, Zhao X B. Finite groups with Few non-cyclic subgroups. J Group Theory, 2007, 10: 225-233.
  • 3Meng W, Lu J K, Li S R. Finite groups with Few non-cyclic subgroups, Ⅱ. Algebra Colloq, 2013, 20:81- 88.
  • 4Doerk K, Hawkes T. Finite Soluble Groups. Berlin: Walter de Gruyter, 1992.
  • 5Gorenstein D. Finite Groups. New York: Chelsea Publishing Co, 1980.
  • 6Huppert B. Endliche Gruppen, I. Berlin: Springer, 1967.
  • 7Robinson D J. A Course in the Theory of Groups. Berlin: Springer, 1980.
  • 8Feit W, Thompson J. Solvability of groups of odd order. Pacific J Math, 1963, 13:775 -1027.
  • 9Janko Z. Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen. Math Z, 1962, 79:422- 424.

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部