期刊文献+

自驱动Janus微球分数布朗运动的颗粒动力学模拟 被引量:1

Particle dynamics simulation on fractional Brownian motion of self-propellant Janus microsphere
原文传递
导出
摘要 该文通过分析Janus微球的运动过程,建立了包括随机布朗力、布朗力矩、自驱动力及Stokes阻力在内的颗粒动力学模型,通过数值模拟手段研究了不同粒径和不同自驱动速度下Janus微球的分数布朗运动,获得了不同的运动模式、均方位移及Hurst指数。模拟结果表明,Janus微球的均方位移随时间非线性增加,在不同观察时间下Janus微球可呈现出布朗运动、自驱动及类布朗运动的特征,Hurst指数亦产生相应变化。数值模拟结果与实验结果很好地符合,反映出Janus微球的分数布朗运动特性,说明所建颗粒力学模型的合理性,为今后Janus微球的操控与具体应用奠定了基础。 Based on Janus microsphere's motion analysis, the particle dynamic model involving random Brownian force and toque, self-propulsion and Stokes drag are constructed. Through numerical solving, the effect of different diameters and different self-propulsion strength on fractional Brownian motion are studied. Different motion modes and the mean square displacement 〈△L2〉 and Hurst indexes are obtained. The simulation results show that 〈 △L2〉 increases with At nonlinearly, Janus particle may be characteriged as the Brownian motion, self-propulsion and Brownian-like motion under the different At and Hurst indexes also change correspondingly. Numerical simulation and experimental observation are in good agreement, which proves the present model reasonable and also provides the foundation for the followed manipulation of Janus particle and the practice applications.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2014年第4期377-384,共8页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金(21005058 11272322 11202219) 高等学校博士学科点专项科研基金(20106120120011) 陕西省教育厅专项科研计划项目(11JK0530)~~
关键词 Janus微球 数值模拟 自驱动 分数布朗运动 Janus microsphere numerical simulation self-propulsion fractional Brownian motion
  • 相关文献

参考文献21

  • 1HIDA T. Brownian motion[J]. Applications of Mathe- matics, 1980, 11: 44-113.
  • 2BECKERSD J V L, DE LEEUW S W. Fractal structure and specific surface of nanoporous silica[J]. Interna- tional Journal of Inorganic Materials, 2001, 3(2): 175- 178.
  • 3MANDELBROT B,文志英,苏虹.分形对象[M].北京,中国:世界图书出版公司,1999:23-25.
  • 4HAN Y, ALSAYED A M, NOBILI M, et al. Brownian motion of an ellipsoid[J]. Science, 2006, 314(5799): 626-630.
  • 5LI T, KHEIFETS S, MEDELLIN D, et al. Measurement of the instantaneous velocity of a Brownian particle[J]. Science, 2010, 328(5986): 1673-1675.
  • 6万黎明,刘朝,刘方,曾丹苓.液体分子分数布朗运动的研究[J].工程热物理学报,2005,26(z1):5-8. 被引量:3
  • 7GRANICK S, JIANG S, CHEN Q. Janus particles[J]. Physics Today, 2009, 62: 68-69.
  • 8ISMAGILOV R F, SCHWARTZ A, BOWDEN N, et al. Autonomous movement and self-assembly[J]. Angewa- ndte Chemic, 2002, 114(4): 674-676.
  • 9RUCKER G, KAPRAL R. Chemically powered nanodi- mers[J]. Physical Review Letters, 2007, 98(15): 150603.
  • 10DABIRI G A, SANGER J M, PORTNOY D A, et al. Li- steria monocytogenes moves rapidly through the host- cell cytoplasm by inducing directional actin assembly[J]. Proceedings of the National Academy of Sciences, 1990, 87(16): 6068-6072.

二级参考文献57

  • 1[3]特科特D L,陈顺,等译.分形与混沌.北京:地震出版社,1993.97-99
  • 2[8]M P Allen, D J Tildesley. Computer Simulation of Liquids. Oxford: Clarendon, 1987. 71-135
  • 3[9]Richard F Voss. Random Fractals: Characterization and measurement. Dynamics of Fractal Surfaces. Fereydoon Family and Tama's Vicsek, 1991. 41-49
  • 4[10]J V L Beckers, S W de Leeuw. Fractal Structure and Specific Surface of Nanoporous Silica. International Journal of Inorganic Materials, 2001, 3:175-178
  • 5[11]Theodoros Karakasidis, Ioannis Andreadis. A Homogenous Random Fractal Model for Time Series Produced by Constant Energy Molecular Dynamics Simulations.Chaos, Solitons and Fractals, 2003, 15:87-98
  • 6[12]Joaquin Cortes and Eliana Valencia. Structural Effects in the Kinetic Behavior of the Monomer-Dimer Surface Reaction Over Nondeterministic Fractal Surfaces. Journal of Colloid and Interface Science, 2003, 267:391-396
  • 7Casagrande C,Veyssié M.C R Acad Sci[J].1988,306:1 423.
  • 8Perro A,Reculusa S,Ravaine S,Bourgeat-Lami,E B,Duguet E.J Mater Chem[J].2005,15(35-36):3 745.
  • 9Walther A,M ller A H E.Soft Matter[J].2008,4:663.
  • 10Isojima T,Lattuada M,Vander Sande JB,Hatton T A.ACS Nano[J].2008,2:1 799.

共引文献18

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部