期刊文献+

基于克隆选择算法和马尔可夫链蒙特卡尔方法融合隐马尔可夫随机场的脑部核磁共振自动分割研究

Research of Brain MRI Segmentation Based on HMRF Fusion with CSA and MCMC Methods
下载PDF
导出
摘要 针对脑部磁共振(MR)图像分割问题,提出了一种基于克隆选择算法(CSA)和隐马尔可夫随机场(HMRF)的融合方法。首先,采用马尔可夫链蒙特卡尔(MCMC)算法对类标签进行估计,进行体素分类;然后,对分割结果进行偏场校正;最后,利用CSA的统计学进行HMRF模型参数估计,并利用迭代优化算法获得最终的分割结果。由于MCMC和CSA都是全局优化技术,所以HMRF-CSA算法能够克服传统HMRF方法的局部收敛以及较低分割精度的缺点。在仿真脑部MR图像集BrainWeb上的实验结果表明,对于主要脑部结构,算法的分割精度高于其他几种算法;且对图像伪影具有鲁棒性。 For the issue thatbrain magnetic resonance (MR) image segmentation,a fusion method based on clonal selection algorithm (CSA) and Hidden Markov random field (HMRF) is proposed.First,using Markov chain Monte Carl (MCMC) algorithm to estimate the class labels carry voxel classification; Then,the segmentation results bias field correction.Finally,the CSA conducted HMRF statistical model parameter estimation,and using an iterative optimization algorithm to obtain the final segmentation result.Since the MCMC and CSA are global optimization techniques,so HMRF-CSA algorithm can overcome the traditional methods HMRF local convergence and lower segmentation accuracy shortcomings.Experimental results on brain MR image sets BrainWeb simulation showed that the main brain structure,segmentation accuracy of the algorithm is higher than several other algorithms for image artifacts and robust.
出处 《科学技术与工程》 北大核心 2014年第24期108-114,共7页 Science Technology and Engineering
基金 国家自然科学基金资助项目(41261087) 新疆维吾尔自治区自然科学基金项目(2010211A08)资助
关键词 脑部磁共振 图像分割 马尔可夫链蒙特卡尔 克隆选择算法 隐马尔可夫随机场 brain magnetic resonance images segmentation Markov chain Monte Carlo Clonal selection algorithm hidden Markov random field
  • 相关文献

参考文献15

  • 1Tian G J,Xia Y,Zhang Y,et al.Hybrid genetic and variational expectation-maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation.Information Technology in Biomedicine,IEEE Transactions on,2011; 15(3):373-380.
  • 2张建伟,杨红,陈允杰,方林,詹天明.结合非局部信息的脑MR图像分割与偏移场恢复耦合模型[J].计算机辅助设计与图形学学报,2013,25(4):526-532. 被引量:4
  • 3Zhang T,Xia Y,Feng DD.Clonal selection algorithm for gaussian mixture model based segmentation of 3d brain MR images.Intelligent Science and Intelligent Data Engineering.Springer Berlin Heidelberg,2012:295-302.
  • 4Xia Y,Eberl S,Wen L,et al.Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.Computerized Medical Imaging and Graphics,2012 ; 36 (1):47-53.
  • 5Descombes X.Markov models and MCMC algorithms in image processing.Academic Press Library in Signal Processing:Volume 4:Image,Video Processing and Analysis,Hardware,Audio,Acoustic and Speech Processing,2013 ; 30 (4):293-299.
  • 6Ulutas B H,Kulturel-Konak S.A review of clonal selection algorithm and its applications.Artificial Intelligence Review,2011 ; 36 (2):117-138.
  • 7崔文超,王毅,樊养余,冯燕,郝重阳.局部高斯分布拟合的脑MR图像分割及有偏场校正[J].中国图象图形学报,2013,18(5):552-557. 被引量:4
  • 8詹天明,张军,韦志辉,肖亮,孙玉宝.基于参数化互信息的脑MR图像分割与偏移场矫正模型及快速算法[J].电子学报,2011,39(12):2807-2812. 被引量:5
  • 9吴锡,周激流,谢明元,罗代升.基于贝叶斯约束统计框架的DT-MRI脑白质纤维追踪成像[J].电子与信息学报,2010,32(8):1786-1791. 被引量:2
  • 10Gong M,Jiao L,Zhang L.Baldwinian learning in clonal selection algorithm for optimization.Information Sciences,2010 ; 180 (8):1218-1236.

二级参考文献149

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Basser P, Mattiello J, and LeBihan D. MR diffusion tensor spectroscopy and imaging [J]. Biophysical Journal, 1994, 66(1): 259-267.
  • 5Susumu M and Zhang Jiang-yang. Principles of diffusion tensor primer imaging and its applications to basic neuroscience research [J]. Neuron, 2006, 51(5): 527-539.
  • 6Lenglet C, Campbell J S W, and Descoteaux M, et al.. Mathematical methods for diffusion MRI processing [J]. Neuroimage, 2009, 45(1): 111-122 .
  • 7Basser P, Pajevic S, and Pierpaoli C, et al.. In vivo fiber tractography using DT-MRI data [J]. Magnetic Resonance in Medicine, 2000, 44(4): 625-632.
  • 8Behrens T E J,Woolrich M W, and Jenkinson M, et al.. Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J]. Magnetic Resonance in Medicine. 2003.50(5): 1077-1088.
  • 9Behrens T E J, Berg H J, and Jbabdi S, et al.. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? [J]. Neurolmage, 2007, 34(1): 144-155.
  • 10Fan Zhang, Hancock E R, and Goodlett C, et al.. Probabilistic white matter fiber tracking using particle filtering and yon Mises-Fisher sampling [J]. Medical Image Analysis, 2009, 13(1): 5-18.

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部