期刊文献+

Terahertz polarization beam splitter based on photonic crystal and multimode interference 被引量:1

Terahertz polarization beam splitter based on photonic crystal and multimode interference
原文传递
导出
摘要 We design a compact terahertz(THz) polarization beam splitter. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The designed polarization beam splitter can split TE-polarized and TM-polarized THz waves into different propagation directions. The simulation results show that the extinction ratios are larger than 18.36 dB for TE polarization and 13.35 dB for TM polarization in the frequency range from 1.86 THz to 1.91 THz, respectively. The designed polarization beam splitter has the advantages of small size and compact structure with a total size of 4.825 mm×0.400 mm. We design a compact terahertz (THz) polarization beam splitter. Both plane wave expansion method and fi- nite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The designed polarization beam splitter can split TE-polarized and TM-polarized THz waves into different propagation di- rections. The simulation results show that the extinction ratios are larger than 18.36 dB for TE polarization and 13.35 dB for TM polarization in the frequency range from 1.86 THz to 1.91 THz, respectively. The designed polarization beam splitter has the advantages of small size and compact structure with a total size of 4.825 mm×0.400 mm.
作者 刘汉 李九生
出处 《Optoelectronics Letters》 EI 2014年第5期325-328,共4页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61379024 and 61131005) the Zhejiang Provincial Outstanding Youth Foundation(No.LR12F05001)
关键词 偏振分束器 分离器 多模干涉 光子晶体 光束 太赫波 有限差分时域法 平面波展开法 Finite difference time domain method Optical instruments Photonic crystals Prisms Time domain analysis
  • 相关文献

参考文献13

  • 1YANG Zhen-gang, LIU Jin-song and WANG Ke-jia, Journal of Optoelectronics· Laser 24, 1158 (2013). (in Chinese).
  • 2Yinghao Yuan, Jian He, Jinsong Liu and Jianquan Yao, Applied Optics 49,6092 (2010).
  • 3Mingzhi Lu, Wenzao Li and Elliott R. Brown, Optics Letters 36, 1071 (2011).
  • 4Jie Shu, Ciyuan Qiu, Victoria Astley, Daniel Nickel, Daniel M. Mittleman and Qianfan Xu, Optics Express 19,26666 (2011).
  • 5LI Zhong-yang, YAO Jian-quan, XU De-gang, BING Pi-bin and ZHONG Kai, Journal of Optoelectronics·Laser 23, 425 (2012). (in Chinese).
  • 6Jiu-sheng Li, De-gang Xu and Jian-quan Yao, Applied Optics 49, 4494 (2010).
  • 7Chen X., Qiang Z., Zhao D., Wang Y., Li H., Qiu Y. and Zhu w., Optics Communications 284, 490 (2011).
  • 8Xiaowei Guan, Hao Wu, Yaocheng Shi, Lech Wosinski and Daoxin Dai, Optics Letters 38, 3005 (2013).
  • 9She J., Forsberg E., Ao X. Y. and He S. L., Journal of Optics A: Pure and Applied Optics 8, 345 (2006).
  • 10Kwong D., Zhang Y., Hosseini A., Liu Y. and Chen R. T., Electronics Letters 46, 1281 (2010).

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部