期刊文献+

存在互耦误差时的圆台共形阵列DOA估计 被引量:3

DOA estimation for truncated cone conformal array in the presence of mutual coupling
原文传递
导出
摘要 阵列存在互耦误差时,由于理想导向矢量与实际导向矢量之间存在偏差,使得高分辨空间谱估计方法性能恶化.本文针对圆台共形阵列,充分利用其结构分布特性,以互耦矩阵呈复共轭对称分布为前提推导出了圆台共形阵列的互耦矩阵模型.在此基础上,利用两种模式对互耦矩阵进行分解,由此建立了两种基于圆台共形阵列的互耦误差自校正模型.两种模型均可以实现存在互耦误差时的圆台共形阵列DOA估计,且校正后的导向矢量与实际导向矢量之间的相关程度得到明显改善.另外,本文所提的互耦自校正方法具有较低的信噪比门限.理论分析和仿真结果证实了本文两种模型的有效性,可以为共形阵列的工程应用提供参考. When mutual coupling error exists in the sensor array, the ideal steering vector differs from the actual steering vector, leading to degradation of the performance of some eigenstructure-based direction-finding methods. According to the truncated cone conforlnal array (TCCA) and on the premise of mutual coupling matrix (MCM) having a complex symmetric structure in this paper, we deduces the MCM model of TCCA by detailed analysis of its mutual coupling characteristics. We establish two models of mutual coupling error calibration, and realize the DOA estimation in the presence of mutual coupling by applying the multidimensional joint iteration method to these two models respectively. The correlation between the estimated steering vector and the actual steering vector becomes more closely, and these two proposed methods have an advantage of low signal-to-noise ratio (SNR) threshold. Theoretical analysis and extensive simulations verify the effectiveness of the proposed methods, and results of this paper can provide a reference for the engineering applications of conformal arrays.
出处 《中国科学:信息科学》 CSCD 2014年第9期1156-1170,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60901066) 长江学者和创新团队发展计划(批准号:IRT-0954) 中央高校基本科研业务费专项资金(批准号:K5051302007) 陕西省教育厅科技计划(批准号:2013JK1051)资助项目
关键词 圆台共形阵列 互耦误差 DOA估计 自校正 TOEPLITZ矩阵 truncated cone conformal array, mutual coupling calibration, DOA estimation, self-calibration,Toeplitz matrix
  • 相关文献

参考文献22

  • 1Mailloux R J. Conformal array antenna theory and design. IEEE Antennas Propag, 2007, 49:126-127.
  • 2王布宏,郭英,王永良,齐子森.共形天线阵列流形的建模方法[J].电子学报,2009,37(3):481-484. 被引量:41
  • 3Blomberg A E A, Austeng A, Hansen R E. Adaptive beamforming applied to a cylindrical sonar array using an interpolated array transformation. IEEE J Oceanic Eng, 2012, 37:25-34.
  • 4Yang P, Yang F, Nie Z P, et al. Robust beamformer using manifold separation technique for semispherical conformal array. IEEE Antenn Wirel Propag Lett, 2011, 10:1035-1038.
  • 5Pan Z H, Li D J, Zhang Q J, et al. Airborne MMW InSAR interferometry based on time varying baseline and BP algorithm. In: Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, 2012.7412-7415.
  • 6Teng X, Li D J. Stationary targets imaging and moving targets detection based on airship conformal sparse array. In: Proceedings of 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, 2011. 1-4.
  • 7Belloni F, Richter A, Koivunen V. DoA estimation via manifold separation for arbitrary array structures. IEEE Trans Signal Proces, 2007, 55:4800- 4810.
  • 8Costa M, Richter A, Koivunen V. Unified array manifold decomposition based on spherical harmonics and 2-D Fourier basis. IEEE Trans Signal Proces, 2010, 58:4634-4645.
  • 9Priedlander b. The root-MUSIC algorithm for direction finding with interpolated arrays. Signal Process, 1993, 30: 15-29.
  • 10Zou L, Lasenby J, He Z. Direction and polarisation estimation using polarised cylindrical conformal arrays. IET Signal Process, 2012, 6:395-403.

二级参考文献41

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2高峰,刘其中,单润红,肖良勇.一种新型圆形智能天线阵互耦补偿研究[J].电子学报,2004,32(11):1871-1874. 被引量:1
  • 3伍裕江,聂在平.一种新的互耦补偿方法及其理论分析[J].电子学报,2007,35(3):492-496. 被引量:9
  • 4L Josefsson,P Persson. Conformal array antenna theory and design [ M]. Canada: Wiley-IEEE Press, 2006.
  • 5H Krim,M Viberg. Two decades of array signal processing research: the parametric approach[J ]. IEEE Signal Processing Magazine, 1996,13(4) :67 - 94.
  • 6S Haykin, J P Reilly, V Kezys,E Vertatschitsch. Some aspects of array signal processing[J ]. IEE Proceedings-F, 1992, 139 (1):1 -26.
  • 7T E Morton, K M Pasala. Pattern synthesis of conformal arrays for airborne vehicles [A]. Proceedings of IEEE 2004 Aerospace Conference [ C ]. Big Sky, Montana, IEEE, 2004.1030 - 1039.
  • 8T F J Girvan, V F Fusco, A. Roberts. A method for calculating the radiation pattern of a non-planar conformal array [A] .Proceedings of 6th IEEE. High Frequency Postgraduate Student Colloquium[ C]. Cardiff School of Engineering, Cardiff University, UK,2001.111 - 118.
  • 9Burger H A. Use of Euler-Rotation angles for generating antenna patterns [J ]. IEEE Antennas and Propagation Magazine, 1995,37(2) :56 - 63.
  • 10Milligan T. More applications of Euler rotation angles [ J ]. IEEE Antennas and Propagation Magazine, 1999,41 (4) : 78 - 83.

共引文献87

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部