期刊文献+

实现输出统一排名的差异共表达双聚类算法

Differential co-expression Biclusters Algorithm for Output Unified Ranking Implementation
下载PDF
导出
摘要 提出了差异共表达框架和一个差异共表达评分函数,以观察到的一个双聚类基因在所属双聚类的条件下共表达和在其他条件下非共表达为基础,客观量化基因双聚类的质量.此外,还提出了一个评分函数把双聚类分层为三种类型的共表达.在实现双聚类输出统一排名中,使用提出的评分函数对这4个公认的双聚类算法在不同区域的6个实际数据集上的性能和行为进行测试.实验结果表明,在鉴别共表达双聚类方面,差异共表达框架能有效提高共表达基因双聚类质量和双聚类算法的性能. In this paper, we propose different expression framework and a differential co-expression scoring function to objectively quantify quality or goodness of a bicluster of genes based on the observation that genes in a bicluster are co-expressed in the conditions belonged to the bicluster and not co-expressed in the other conditions. Furthermore, we propose a scoring function to stratify hiclusters into three types of co-expression. We used the proposed scoring functions to understand the performance and behavior of the four well established biclustering algorithms on six real datasets from different domains by combining their output into one unified ranking. Experimental results show that differential co-expression framework is effective to provide quantitative and objective assessment of the goodness of biclusters of co-expressed genes and performance of hi- clustering algorithms in identifying co-expression hiclusters.
作者 孙俊玲
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第5期159-164,共6页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(60970063)
关键词 共表达 双聚类 差异共表达框架 co-expression bicluster differential co-expression framework
  • 相关文献

参考文献11

  • 1Ben-Dor A,Shamir R,and Yakhini Z.Clustering gene expression patterns[J].J Comput Biol,1999,6(34):281-297.
  • 2Chen X,Cheung S T,So S.Gene expression patterns in human liver cancers[J].Mol Biol Cell,2002,13(6):1929-1939.
  • 3Ihmels J,Bergmann S,and Barkai N.Defining transcription modules using large-scale gene expression data[J].Bioinformatics,2004,20(13):1993-2003.
  • 4Ben-Dor A,Chor B,and Karp R.Discovering Local Structure in Gene Expression Data:The Order Preserving Submatrix Problem[J].Jl of Comput Biol,2003,10(34):373-384.
  • 5Tanay A,Sharan R,and Shamir R.Discovering statistically significant biclusters in gene expression data[J].Bioinformatics,2002,18(1):136-144.
  • 6Prelic A,Bleuler S,Zimmermann P.A systematic comparison and evaluation of biclustering methods for gene expression data[J].Bioinformatics,2006,22(9):1122-1129.
  • 7Brot P,Camilleri-Brot S,Zhang S.Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics:implications for chemotherapy selection[J].Cancer Res,2009,69(3):1055-1062.
  • 8Kostka D,Spang R.Finding disease specific alterations in the co-expression of genes[J].Bioinformatics,2004,20(01):194-199.
  • 9Yen-Tsung Huang,Xihong Lin.Gene set analysis using variance component tests[J].BMC Bioinformatics,2013,14(210):276-289.
  • 10Gianvito Pio,Michelangelo Ceci,Domenica D'Elia,et al.A Novel Biclustering Algorithm for the Discovery of Meaningful Biological Correlations between microRNAs and their Target Genes[J].BMC Bioinformatics,2013,14(07):8-18.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部