期刊文献+

旋转滑动弧促进甲烷干重整制取合成气 被引量:5

Syngas Generation from Dry Reforming of Methane Using a Rotating Gliding Arc
下载PDF
导出
摘要 实验考察了常温常压下,利用旋转滑动弧等离子体促进CH4-CO2重整制取合成气的效果,分析了放电电压、CH4体积分数和供气流量等参数对反应物转化率、产物选择性和经济效益等的影响.实验发现,CH4体积分数增加,会使CH4转化率升高,CO2转化率先增后减.流量增加,会使CH4、CO2转化率整体呈下降趋势.流量为12,L/min时,CH4、CO2最高转化率分别为43.78%、42.66%,H2、CO最高选择性分别为44.20%、32.48%,H2/CO体积比范围为0-1.56.单位摩尔量合成气所需电耗最低为195.06,kJ/mol,能量转化效率最高为46.535%. Syngas generation from dry reforming of methane using a rotating gliding arc plasma co-driven by tangential flow and magnetic field was investigated. The effect of discharge voltage,CH4 concentration and gas flow on performance of reactant conversion,product selectivity and economic efficiency was studied. Results show that,as CH4 concentration grows,CH4 conversion increases,and CO2 conversion first increases and then decreases. As gas flow rate increases,CH4 and CO2 conversions both drop. When the gas flow rate is 12,L/min,the maximum conversion of CH4 and CO2 are 43.78% and 42.66% respectively. Meanwhile,the maximum selectivities of H2 and CO are44.20% and 32.48% respectively,and H2/CO ratio ranges from 0 to 1.56. The minimum specific energy is 195.06kJ/mol and the maximum energy conversion efficiency is 46.535%.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2014年第4期348-355,共8页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51076142) 浙江省自然科学基金资助项目(LY13E020004)
关键词 旋转滑动弧 等离子体 甲烷干重整 合成气 rotating gliding arc plasma dry reforming of methane syngas
  • 相关文献

参考文献14

  • 1Chun Y N, Yang Y C, Yoshikawa K. Hydrogen genera- tion from biogas reforming using a gliding arc plasma- catalyst reformer[J]. Catalysis Today, 2009, 148(3). 283-289.
  • 2Tao X, Bai M, Li X, et al. CH4-CO2 reforming by plasma-challenges and opportunities[J]. Progress in En- ergy and Combustion Science, 2011, 37 (2) : 113-124.
  • 3Bo Z, Yan J, Li X, et al. Plasma assisted dry methanereforming using gliding arc gas discharge : Effect of feed gases proportion [J]. International Journal of Hydrogen Energy, 2008, 33(20): 5545-5553.
  • 4Bradford M C J, Vannice M A. CO2 reforming of CHa[J]. Catalysis Reviews, 1999, 41(1): 1-42.
  • 5Fischer F, Tropsch H. Process for the Production of Paraffin-Hydrocarbons with More Than One Carbon Atom: US, 1746464[P].1930.
  • 6Rostrup-Nielsen J R. New aspects of syngas production and use[J]. Catalysis Today', 2000, 63 (2) : 159-164.
  • 7Ghorbanzadeh A M, Norouzi S, Mohammadi T. High energy efficiency in syngas and hydrocarbon production from dissociation of CH4-CO2 mixture in a non- equilibrium pulsed plasma[J]. Journal of Physics D: Applied Physics, 2005, 38(20): 3804-3811.
  • 8Li M, Xu G, Tian Y, et al. Carbon dioxide reforming of methane using DC corona discharge plasma reac- tion [J]. The Journal of Physical Chemistry A, 2004, 108(10): 1687-1693.
  • 9Tu X, Gallon H J, Twigg M V, et al. Dry reforming of methane over a Ni/A1203 catalyst in a coaxial dielectric barrier discharge reactor[J]. Journal of Physics D: Applied Physics, 2011, 44(27): 274007.
  • 10钟犁,严建华,薄拯,李晓东,岑可法.滑动弧放电等离子体重整甲烷制取合成气[J].浙江大学学报(工学版),2010,44(3):505-509. 被引量:4

二级参考文献10

  • 1FRIDMAN A, NESTER S, LAWRENCE A, et al. Gliding arc gas discharge [J].Progress in Energy and Combustion,1999,25(2): 211 - 231.
  • 2CZENICHOVSKI A. Gliding arc applications to engi neering and environment control[J]. Pure & Appl Chemistry, 1994,66(6) : 1301 - 1310.
  • 3BENSTAALI B, MOUSSA D, ADDOU A, et al. Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air[J]. The European Physical Journal Applied Physics, 1998,4(2) : 171 - 179.
  • 4LEE D H, KIM K T, CHA M S, et al. Optimization scheme of a rotating gliding arc reactor for partial oxida tion of methane[J]. Proceeding of the Combustion Institute, 2007,31(2) : 3343 - 3351.
  • 5MUTAF-YARDIMCI O. Plasma catalysis in hydrocarbon processing by using non equilibrium plasma discharges[D]. Chicago:University of Illinois, 2001.
  • 6DALAINE V, CORMIER J, PELLERIN S. Study and modeling of a 50 Hz gliding discharge[J]. Optimization of Electrical and Electronic Equipment, 1998,1:161 - 166.
  • 7KADO S, URASAKI K, SEKINE Y, et al. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature[J]. Fuel, 2003, 82(18) :2291 - 2297.
  • 8齐凤伟,陶旭梅,李洁,龙华丽,印永祥.热等离子体和催化剂协同作用重整甲烷和二氧化碳制备合成气[J].天然气化工—C1化学与化工,2007,32(5):32-35. 被引量:10
  • 9陈俊武.燃料能源的相互转化及其利用效率(上)[J].石油规划设计,2001,12(2):3-6. 被引量:1
  • 10张军旗,杨永进,张劲松,刘强.常压、脉冲微波强化丝光等离子体作用下甲烷与二氧化碳的反应研究[J].化学学报,2002,60(11):1973-1980. 被引量:13

共引文献3

同被引文献134

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部