期刊文献+

案例推理属性权重的分配模型比较研究 被引量:23

A Comparative Study of Attribute Weights Assignment for Case-based Reasoning
下载PDF
导出
摘要 案例推理系统中各属性权重的赋值决定了案例之间的相似度大小,进而对推理结果的正确与否产生显著影响.以属性加权K-最近邻相似案例检索为基础,讨论了使用注水原理分配属性权重的机理,并通过建立权重分配的合理性指标,构造拉格朗日函数对权重进行优化求解,得到了收敛的注水分配算法.通过五折交叉的模式分类实验,分别对属性权重的平均分配法、注水分配算法和遗传算法分配法进行了比较研究,案例推理分类结果证明,在引入注水分配算法后,其分类性能得到有效改善. The attribute weights assignment in case-based reasoning (CBR) system may determine the similarities between cases, and thus it has a significant impact on the correctness of reasoning. To improve the reasoning performance, the water-filling theory is introduced to the attribute weights assignment in this paper. Reasonable indicators of weight distribution are established, an associated Lagrange function is constructed and the weight optimization solution can be achieved. Thereby a convergent water-filling assignment (WFA) algorithm is obtained which can be used in the weighted K-nearest neighbor rule to retrieve similar cases. Classification experiments for comparison between the mean assignment method, WFA method and genetic algorithms for the attribute weights using the 5-fold cross-validation method are conducted. The results show that the classification performance of CBR can be further increased after the attribute weights are assigned by WFA.
出处 《自动化学报》 EI CSCD 北大核心 2014年第9期1896-1902,共7页 Acta Automatica Sinica
基金 国家自然科学基金项目(61374143)~~
关键词 案例推理 属性权重 注水原理 模式分类 Case-based reasoning (CBR), attribute weights, water-filling theory (WFT), pattern classification
  • 相关文献

参考文献24

  • 1Schank R C. Dynamic Memory: A Theory of Reminding and Learning in Computers and People. New York: Cambridge University Press, 1982.
  • 2Kolodner J L. Maintaining organization in a dynamic long-term memory. Cognitive Science, 1983, 7(4): 243-280.
  • 3Aamodt A, Plaza E. Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications, 1994, 7(1): 39-59.
  • 4Liu Y H, Yang C S, Yang Y B, Lin F H, Du X M, Ito T. Case learning for CBR-based collision avoidance systems. Applied Intelligence, 2012, 36(2): 308-319.
  • 5Xing G S, Ding J L, Chai T Y, Afshar P, Wang H. Hybrid intelligent parameter estimation based on grey case-based reasoning for laminar cooling process. Engineering Applications of Artificial Intelligence, 2012, 25(2): 418-429.
  • 6柴天佑.复杂工业过程运行优化与反馈控制[J].自动化学报,2013,39(11):1744-1757. 被引量:79
  • 7Tadrat J, Boonjing V, Pattaraintakorn P. A new similarity measure in formal concept analysis for case-based reasoning. Expert Systems with Applications, 2012, 39(1): 967-972.
  • 8Wang H C, Huang T H. An enhanced case-based reasoning model for supporting inference missing attribute and its feature weight. Journal of Internet Technology, 2012, 13(1): 45-56.
  • 9Carmona M A, Barbancho J, Larios D F, León C. Applying case based reasoning for prioritizing areas of business management. Expert Systems with Applications, 2013, 40(9): 3450-3458.
  • 10Cover T M, Hart P E. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.

二级参考文献7

共引文献91

同被引文献181

引证文献23

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部