期刊文献+

磨矿粒度动态过程的一种快速Monte Carlo仿真方法 被引量:5

A Fast Monte Carlo Algorithm for Dynamic Simulation of Particle Size Distribution of Grinding Processes
下载PDF
导出
摘要 磨矿是降低矿物粒度的工业过程,产品粒度是磨矿过程的关键质量指标.由于磨矿粒度难以在线检测且磨矿生产过程具有综合复杂特性,难以采用传统控制方法实现磨矿粒度的控制.因此,建立磨矿粒度和关键工艺参数的动态模型对于磨矿运行控制和优化具有重要意义.采用总量平衡原理获得磨矿粒度的微分方程模型多数情况下无法获得解析解.而基于Monte Carlo(MC)方法的磨矿粒度模型能够精确模拟磨矿粒度分布的动态变化,但是其仿真效率低难以实用.本文针对这一问题提出一种新的MC仿真方法:在定总量方法的基础上引入新的颗粒移除机制,在移除过程中动态地分配各个粒级颗粒数目并保持破裂前后各个粒级颗粒所占总颗粒数的百分比不变,避免颗粒移除过程中由于粒级差异导致的抽样误差,且避免MC仿真速度随着仿真推进下降的问题.仿真实验验证表明,本方法能够在保证一定精度前提下显著提高磨矿粒度MC仿真的计算速度.最后,通过一个实例介绍了本文仿真模型在磨矿优化控制中的应用. Grinding is an industrial process of reducing the particle size of ore, and the product particle size distribution (PSD) is the key quality index of the grinding process. Due to the difficulty of measuring PSD online and the comprehensive complexity of the grinding process, a PSD of the grinding process is difficult to control with traditional control methods. It is therefore important to establish the PSD model of grinding process to facilitate the optimization of its operation and control. Traditionally, the population balance principle is used to establish the PSD model, but it cannot arrive at an analytical solution in most cases. A Monte Carlo (MC) based model can accurately simulate the PSD dynamics, however it is too inefficient for practical use. In view of this problem, this paper proposes a new MC method which is developed based on the constant number MC (CNMC) method. This method develops a new particle removal mechanism to reduce the sampling noise caused by the CNMC removal operation. This can avoid the problem that the simulation speed decreases sharply with the simulation time. The simulation results validate that the proposed method can speed up the simulation while maintaining good accuracy. In the last, an application of the proposed model to the simulation of optimal control for a grinding process is introduced as an example.
作者 卢绍文 余策
出处 《自动化学报》 EI CSCD 北大核心 2014年第9期1903-1911,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61240012) 中央高校基本科研业务费专项资金(N120408003) 国家科技支撑计划课题(2012BAF19G01)资助~~
关键词 磨矿过程 优化运行控制 粒度分布模型 MONTE Carlo仿真方法 Grinding process, optimal operational control, particle size distribution (PSD) model, Monte Carlo (MC) simulation
  • 相关文献

参考文献17

  • 1Chai T Y. Optimal operational control for complex industrial processes. In: Proceedings of the 8th IFAC Symposium on Advanced Control of Chemical Processes. Singapore: The International Federation of Automatic Control, 2012. 722-731.
  • 2柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报,2009,35(6):641-649. 被引量:70
  • 3Zhou P, Chai T, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743.
  • 4Sbárbaro D. Dynamic Simulation and Model-based Control System Design for Comminution Circuits. London: Springer, 2010.
  • 5Schug B W, Nees M R, Gamarano T V. Process Simulation for Improved Plant Design through p&id Validation, Technical Report, Andritz Automation Inc., USA, 2012.
  • 6King R P. Modeling and Simulation of Mineral Processing Systems. Oxford: Butterworth-Heinemann, 2001.
  • 7苏军伟,顾兆林,XU X.Yun.离散相系统群体平衡模型的求解算法[J].中国科学:化学,2010,40(2):144-160. 被引量:24
  • 8Mishra B K. Monte Carlo Method for the Analysis of Particle Breakage. London: Elsevier, 2007. 637-660.
  • 9Gillespie D T. Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 2007, 58(1): 35-55.
  • 10Khalili S, Lin Y, Armaou A, Matsoukas T. Constant number Monte Carlo simulation of population balances with multiple growth mechanisms. AIChE Journal, 2010, 56(12): 3137-3145.

二级参考文献49

共引文献131

同被引文献43

  • 1赵大勇,岳恒,周平,柴天佑.基于智能优化控制的磨矿过程综合自动化系统[J].山东大学学报(工学版),2005,35(3):119-124. 被引量:19
  • 2杨燕,曹建光,田志宏.交流电机模型参考自适应控制系统的仿真[J].电气传动,2007,37(5):13-15. 被引量:12
  • 3Tie M,Yue H,Chai T.A hybrid intelligent soft-sensor model for dynamic particle size estimation in grinding circuits[M]// Advances in Neural Networks-lSNN 2005.Springer Berlin Heidelberg, 2005 : 871-876.
  • 4Bouche C, Brandt C, Broussaud A.Advanced control of gold orc grinding plants in South Africa[J].Minerals Engineering, 2005(18) :866-876.
  • 5Farzanegan A,Ghalaei A E.Simulation-assisted evaluation of grinding circuit flowsheet design alternatives aghdarreh gold ore [J]. Archives of Mining Sciences', 2015,60( 1 ): 123-141.
  • 6Austin L G,Klimpel R R,Luckie P T.Process Engineering of Size Reduction:Ball Milling [M].New York:Society of Mining Engineers of the AIME, 1984:69-135.
  • 7Wang X,Wang Y, Yang C, et al.Hybrid modeling of an indu- strial grinding-classification process [J].Powder Technology,2015,279 : 75-85.
  • 8Verkoeijen D, Pouw G A, Meesters G M H, et al.Population balances for particulate processes:a volume approach [J]. Chemical Engineering Science, 2002(57 ) : 2287-2303.
  • 9Ying D ,Li S R.Mathematieal Models of Mineral Processing [M].Changsha : Central South University of Technology Press, 1993 : 128-162.
  • 10Makokha A B, Moys M H, Bwalya M M, et al.Modeling the RTD of an industrial overflow ball mill as a function of load volumn and slurry concentration [J].Minerals Engineering, 2011,24( 3/4 ) : 335-340.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部