期刊文献+

陕西铧厂沟金矿床中细碧岩的岩石学和元素地球化学特征研究 被引量:4

Petrological and Geochemical Characteristics of the Spilite in the Huachanggou Gold Deposit in the Shaanxi Province
下载PDF
导出
摘要 细碧岩是陕西铧厂沟金矿床的主要容矿岩石之一.在野外观察的基础上,利用显微镜观察、电子探针扫描和主微量元素分析等综合分析技术对细碧岩的岩石学、元素地球化学特征进行了研究.结果表明,细碧岩具有由钠长石+绿泥石+绿帘石±阳起石、钠长石+含铁白云石+绢云母两种典型蚀变矿物组合特征;在火山岩TAS分类图解上主要落入玄武质粗面安山岩区,属于拉班玄武岩岩石系列;其稀土元素总量较低(27.53×10-6~58.46×10-6),轻稀土略富集[(La/Yb)N均值为1.24],稀土元素配分曲线主体呈平坦型;稳定高场强微量元素特征表明其原岩形成于伸展的构造环境,可能起源于软流圈之上的原始尖晶石二辉橄榄岩稳定区域,在形成过程中遭受地壳物质混染,推断为泥盆纪中期勉略洋盆的初始洋盆阶段的产物. The spilite is one of the main host rocks in the Huachanggou gold deposit. On the basis of detailed field geological survey and systematic laboratory study including microscope observation, electron probe scanning, major and trace element analysis, this article studied petrological and element geochemical characteristics of spilites. The result showed that two typical altered mineral assemblages of spilite are albite+chlorite+epidote±actinolite and albite+Fe-dolomite+sericite, and that the spilite samples fall into tholeiitic basalt series and basaltic trachyande site areas in the TAS diagram of effusive rocks, having low REE content (27.53× 10-6 -58.46 ×10-6), low en richment in LREE [the average value of (La/Yb)N is 1.24], and a flat REE pattern. The analysis of stable high field strength elements (HFSE) suggested the splite was formed in an extentional setting, and possibly originated from a primitive spinel-lherzolite stability field above asthenosphere mantle. Crustal contamination also contributed significantly to the formation of the spilite. It can be inferred that the spilite was formed in the early stage of the development of the Mianlue ocean in the Middle Devonian.
出处 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2014年第4期411-420,共10页 Bulletin of Mineralogy, Petrology and Geochemistry
基金 国家自然科学基金重点项目(41030423) 中国地质调查局地质调查项目(1212011220924) 中国黄金集团公司及中国人民武警警察部队黄金研究所委托项目(WHY(05)-03) 111计划(B07011)
关键词 岩石学 元素地球化学 细碧岩成因 铧厂沟金矿 petrology elemental geoehemistry genesis of spilite Huaehanggou gold deposit
  • 相关文献

参考文献34

  • 1Condie K C. 1989. Geochemical changes in basalts and andsites across the Archaean-Proterozoie boundary: Identification and significance[J]. Lithos, 23 : 1 - 18.
  • 2Condie K C. 2005. High field strength element ratios in Archean ba- salts: A window to evolving sources of mantle plumes[J]. Lithos, 70: 491-504.
  • 3Hardarson B S, Fitton J G. 1991. Increased mantle melting beneath Snaefellsjokull volcano during I.ate Pleistocene glaciation[J]. Nature, 363: 62-64.
  • 4Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D. 2004.Flood and shield basahs from Ethiopia: Mggmas from the African superswell[J]. Jour- nal of Petrology, 45(4) : 793-834.
  • 5Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alka- li-silica diagram[J]. Journal of Petrology, 27(3): 745-750.
  • 6Pearee J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Arehe- an oceanic crust[J]. Lithos, 100: 14-48.
  • 7Pearce J A, Parkinson I J. 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis[J]. Geology Society London Special Publication, 76 : 373- 403.
  • 8Pearce J A, Peate D W. 1995. Tectonic implications of the composi- tion of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences, 23(1) : 251 -285.
  • 9Saunders A D, Storey M, Kent R W, Norry M J. 1992. Conse- quences of plume-lithosphere interaction[J]. Geology Society London Special Publication, 68 : 41 - 60.
  • 10Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth Planetgry Sciences Letters, 59:101-118.

二级参考文献113

共引文献591

同被引文献112

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部