期刊文献+

Traveling wavefronts of a nonlinear reaction-diffusion model of tumor growth under the acid environment 被引量:2

Traveling wavefronts of a nonlinear reaction-diffusion model of tumor growth under the acid environment
原文传递
导出
摘要 In this paper, a reaction-diffusion model describing temporal development of tumor tissue, normal tissue and excess H+ ion concentration is considered. Based on a combi- nation of perturbation methods, the Fredholm theory and Banach fixed point theorem, we theoretically justify the existence of the traveling wave solution for this model.
出处 《International Journal of Biomathematics》 2014年第3期183-199,共17页 生物数学学报(英文版)
关键词 Tumor growth excess H+ ion REACTION-DIFFUSION traveling wavefronts existence. 反应扩散模型 肿瘤生长 酸性环境 Banach不动点定理 非线性 Fredholm 波前 行驶
  • 相关文献

参考文献12

  • 1N. Bellomo and L. Preziosi, Modeling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model. 32 (2000) 413-452.
  • 2T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response, Proc. Roy. Soc. London Ser. A 462 (2006) 229-261.
  • 3R. A. Gatenby, Models of tumor host interaction as competing populations: Implications for tumor biology and treatment, J. Theor. Bioi. 176 (1995) 447-455.
  • 4R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res. 56 (1996) 5745-5753.
  • 5S. Michelson and J. Leith, Autocrine and paracrine growth factors in tumor growth: A mathematical model, Bull. Math. BioI. 53 (1991) 639-656.
  • 6K. Mischaikow, H. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc. 347 (1995) 1669- 1685.
  • 7J. D. Murray, Mathematical Biology, Vols. I and II (Springer-Verlag, New York, 2002).
  • 8K. J. Palmer, Exponential dichotomies and transversal homo clinic points, J. Differential Equations 55 (1984) 225-256.
  • 9J. A. Sherratt, Cellular growth control and traveling waves of cancer, SIAM J. Appl. Math. 53 (1993) 1713-1730.
  • 10J. A. Sherratt, Wavefront propagation in a competition equation with a new motility term modeling contact inhibition between cell populations, Proc. Roy. Soc. London Ser. A 456 (2000) 2365-2386.

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部