期刊文献+

Global stability of an epidemic model for HIV-TB co-infection with infection-age

Global stability of an epidemic model for HIV-TB co-infection with infection-age
原文传递
导出
摘要 A nonlinear mathematical HIV TB model with infection-age is proposed in this paper. The basic reproduction numbers according to HIV and TB are respectively determined whether one of the diseases dies out or persists. The local and global stability of the disease-free and dominated equilibria are discussed by employing integral semigroup theory and Lyapunov functionals. The persistence of the system is also obtained by the persistence theories of the systems. The simulation illustrates the theoretical results.
出处 《International Journal of Biomathematics》 2014年第4期139-171,共33页 生物数学学报(英文版)
关键词 Co-infection model global stability persistence. 双重感染 流行病模型 稳定 年龄 Lyapunov函数 非线性数学 半群理论 艾滋病
  • 相关文献

参考文献26

  • 1J. K. Hale and P. Waltman, Persistence in finite-dimensional systems, SIAM J. Math. Anal. 20 (1981) 388-395.
  • 2S. Gakkhar and N. Chavda, A dynamical model for HIV-TB co-infection, Appl. Math. Comput. 218 (2012) 9261-9270.
  • 3J. M. Hyman and J. Li, Infection-age structured epidemic models with behavior change or treatment, J. Bioi. Dynam. 1 (2007) 109-131.
  • 4M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, Vol. 7 (Giardini Editorie Stampatori, Pisa, 1995).
  • 5D. Kirschner, Dynamics of co-infection with M. tuberculosis and HIV-1, Theor. Populo BioI. 55 (1999) 94-109.
  • 6Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew Math. Phys. 62 (2011) 191-222.
  • 7E. F. Long, N. K. Vaidya and M. L. Brandeau, Controlling co-epidemics: Analysis of HIV and tuberculosis infection dynamics, Oper. Res. 56(6) (2008) 1366-138l.
  • 8P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differential Equations 65 (2001) 1-35.
  • 9P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal. 89 (2010) 1109-1140.
  • 10P. Magal and X. Q. Zhao, Global at tractors in uniformly persistent dynamical systems, SIAM J. Math. Anal. 31 (2005) 251-275.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部