期刊文献+

融合显著信息的层次特征学习图像分类 被引量:15

Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency
下载PDF
导出
摘要 高效的图像特征表示是计算机视觉的基础.基于图像的视觉显著性机制及深度学习模型的思想,提出一种融合图像显著性的层次稀疏特征表示用于图像分类.这种层次特征学习每一层都由3个部分组成:稀疏编码、显著性最大值汇聚(saliency max pooling)和对比度归一化.通过在图像层次稀疏表示中引入图像显著信息,加强了图像特征的语义信息,得到图像显著特征表示.相比于手工指定特征,该模型采用无监督数据驱动的方式直接从图像中学习到有效的图像特征描述.最后采用支持向量机(support vector machine,SVM)分类器进行监督学习,实现对图像进行分类.在2个常用的标准图像数据集(Caltech 101和Caltech 256)上进行的实验结果表明,结合图像显著性信息的层次特征表示,相比于基于局部特征的单层稀疏表示在分类性能上有了显著提升. Efficient feature representations for images are essential in many computer vision tasks.In this paper,a hierarchical feature representation combined with image saliency is proposed based on the theory of visual saliency and deep learning,which builds a feature hierarchy layer-by-layer.Each feature learning layer is composed of three parts:sparse coding,saliency max pooling and contrast normalization.To speed up the sparse coding process,we propose batch orthogonal matching pursuit which differs from the traditional method.The salient information is introduced into the image sparse representation,which compresses the feature representation and strengthens the semantic information of the feature representation.Simultaneously,contrast normalization effectively reduces the impact of local variations in illumination and foreground-background contrast,and enhances the robustness of the feature representation.Instead of using hand-crafted descriptors,our model learns an effective image representation directly from images in an unsupervised data-driven manner.The final image classification is implemented with a linear SVM classifier using the learned image representation.We compare our method with many state-of-the-art algorithms including convolutional deep belief networks,SIFT based single layer or multi-layer sparse coding methods,and some kernel based feature learning approaches.The experimental results on two commonly used benchmark datasets Caltech 101 and Caltech 256 show that our method consistently and significantly improves the performance.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1919-1928,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61175026) 科技部国际科技合作专项(2013DFG12810) 国家"十二五"科技支撑计划基金项目(2012BAF12B11) 浙江省国际科技合作专项(2013C24027)
关键词 特征学习 层次稀疏表示 图像显著性 图像分类 显著性最大值汇聚 feature learning hierarchical sparse coding image saliency image classification saliency max pooling
  • 相关文献

参考文献31

  • 1Jarrett K, Kavukcuoglu K, Ranzato M, et al. What is the best multi stage architecture for object recognition? [C] // Proc of the 12th IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2009:2146-2153.
  • 2Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection [C]//Proc of the 22nd IEEE Int Conf on Computer Vision and Pattern Recognition. Piseataway, NJ: IEEE, 2009: 1597-1604.
  • 3韩冰,杨辰,高新波.融合显著信息的LDA极光图像分类[J].软件学报,2013,24(11):2758-2766. 被引量:20
  • 4Gemert J C, Geusebroek J M, Veenman C J, et al. Kernel codebooks for scene categorization [C] //Proc of the 10th European Conf on Computer Vision. New York: ACM, 2008:696-709.
  • 5Csurka G, Dance C R, Fan Lixin, et al. Visual categorization with bags of keypoints [C] //Proc of the 8th European Conf on Computer Vision. Berlin: Springer, 2004: 1-22.
  • 6Lazebnik S, Schmid C, Ponce J. Beyond bags of featuresz Spatial pyramid matching for recognizing natural scene categories [C] //Proc of the 19th Computer Society Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2006:2169-2178.
  • 7Yang Jianchao, Yu Kai, Gong Yihong, etal. Linear spatial pyramid matching using sparse coding for image classification [C] //Proc of the 22nd Computer Society Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009:1794-1801.
  • 8Wang Jinjun, Yang Jianchao, Yu Kai, et al. Locality constrained linear coding for image classification [C] //Proc of the 23rd IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2010:3360-3367.
  • 9Yu Kai, Lin Yuanqing, Lafferty J. Learning image representations from the pixel level via hierarchical sparse coding [C]//Proc of the 24th IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2011:1713-1720.
  • 10余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:610

二级参考文献16

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献628

同被引文献103

  • 1纪传俊,刘作涛,产文,周向东.一个基于语义上下文建模的图像自动标注系统[J].计算机研究与发展,2011,48(S3):441-445. 被引量:2
  • 2邢晓芬,徐向民,黄晓泓,黄建敬.基于内容的医学图像分类研究[J].科学技术与工程,2007,7(1):85-90. 被引量:9
  • 3董立岩,苑森淼,刘光远,贾书洪.基于贝叶斯分类器的图像分类[J].吉林大学学报(理学版),2007,45(2):249-253. 被引量:30
  • 4陈丹,李京华,黄根全,许家栋.基于证据理论的战场被动声多目标识别研究[J].系统仿真学报,2007,19(6):1323-1325. 被引量:3
  • 5Changren Zhu, Hui Zhou, Runsheng Wang, et al. A novel hierarchical method of ship detection from space borne optical image based on shape and texture features [J]. IEEE Transactions on Geosciences and Remote Sensing, 2010,48 (9) : 3446-3456.
  • 6张铮,王艳萍,等.数字图像处理与机器视觉-VisualC++与Matlab实现[M].北京:人民邮电出版社,2012:178-180.
  • 7J. X. Sun. Modern pattern recognition[M]. Second e- dition. Beijing: Higher Education Publishing Company, 2008 : 252-259.
  • 8Anagnostopoulos G C. SVM-based target recognition from synthetic aperture radar images using target re- gion outline descriptors[J]. Nonlinear Analysis,2009, 71(12) : e2934-e2939.
  • 9Hwang W S, Weng J Y. Hierarchical discriminant re- gression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(11) : 1277-1293.
  • 10Li Feifei, Perona P. A Bayesian hierarchical model for learning natural scene categories[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition(CVPR), Washington, USA, 2005 : 524-531.

引证文献15

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部