期刊文献+

一种将测试集嵌入到Test-per-Clock位流中的方法 被引量:1

A New Method of Embedding Test Patterns into Test-per-Clock Bit Stream
下载PDF
导出
摘要 集成电路测试方案的关键在于测试向量产生器的设计.传统的测试方法在测试向量生成、测试应用的过程中,没有充分利用测试数据位流来构建测试向量,从而造成了测试时间和存储开销的增加.为了减少测试成本,提出了一种基于test-per-clock模式的内建自测试方法.通过对线性移位测试结构的分析,提出了一种递进式的反复测试生成方法:顺序求解输入位流,逆向精简,多次求解以获得更优值,最终将测试集以较小的代价嵌入到test-per-clock位流中.在测试应用时,只需存储求解后的最小输入流,通过控制线性移位的首位从而生成所需的测试集.实验结果表明,在达到故障覆盖率要求的前提下,能显著地减少测试应用时间和存储面积开销. The key of IC testing lies in the test patterns generator(TPG)design.Traditional testing methods do not make full use of the test data bit stream to construct test patterns during the test generation and application process,which results in high test cost due to the enormous test data.Test-per-scan scheme exposes the drawback of long test application time with the test data volumes increasing.In order to reduce the test cost,a built-in self test(BIST)scheme based on test-per-clock testing is proposed.Based on the analysis of linear shift test structure,a corresponding forwardbackward test patterns generation method is proposed,which efficiently embeds the test set into testper-clock bit stream.In this method,test patterns are determined by the solution of input-stream with fault dropping,where the input-stream is composed by the first bits of these patterns.The solved minimum input-stream after repeatedly reduction is directly stored in the memory to control the linear shifter in the test application,so as to generate the whole required test set.The experimental results demonstrate that the proposed method,under the precondition of meeting the required fault coverage,can obviously shorten test application time and reduce storage area overhead compared with other approaches.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期2022-2029,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60773207) 教育部新世纪优秀人才支持计划基金项目(NCET-12-0165)
关键词 内建自测试 test-per-clock 测试位流 测试生成 测试开销 built-in self test test-per-clock test bit stream test generation test cost
  • 相关文献

参考文献20

  • 1Nadeau B, Cote J F, Hulvershorn H, et al. An embedded technique for at-speed interconnect testing [C] //Proc of Int Test Conf 1999 (ITC'99). Piseataway, NJ: IEEE, 1999: 431-438.
  • 2You Z Q, Wang W Z, Dou Z P, et al. A scan disabling based BAST scheme for test cost reduction [J]. IEICE Electronics Express, 2011, 8(16): 1367-1373.
  • 3Lee H K, Ha D S. Atalanta: An efficient ATPG for combinational circuits, 93-12, [R]. Blaekshurg, Virginia: Department of Electrical Engineering, Virginia Polytechnic Institute and State University, 1993.
  • 4Bardell P H, Mcanney W H. Simultaneous self-testing system: USA, US4513418[P]. 1985-04-23.
  • 5Novak O, Nusek J. Test-per-clock testing of the circuits with scan [C] //Proc of the 7th IEEE Int On lane Testing Workshop. Piscataway, NJ: IEEE, 2001:90-92.
  • 6Chandra A, Chakraharty K. Test data compression and decompression based on internal scan chains and Golomb coding [J]. IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems, 2002, 21 (6): 715-722.
  • 7Venkataraman S, Rajski J, Hellebrand S, et al. An efficient BIST scheme based on reseeding of multiple polynomial linear feedback shift registers [C] //Proc of Int Conf on Computer Aided Design. Piseataway, NJ: IEEE, 1993: 572-577.
  • 8Yoneda T, lnoue M, Taketani A, et al. Seed ordering and selection for high quality delay test [C] //Proc of the 19th IEEE ARian Test Symp (ATS). Piscataway, NJ: IEEE, 2010; 313-318.
  • 9Wang L T, Mccluskey E J. Concurrent built-in logic block observer (CBILB(I)[C] //Proc of 1986 IEEE Int Syrup on Circuits and Systems. Piscataway, NJ: IEEE, 1986: 1054- 1057.
  • 10Micheli G. De. Synthesis and Optimization of Digital Circuits [M]. New York: McGraw Hill, 1994.

二级参考文献1

共引文献9

同被引文献15

  • 1Mehta U S, Dasgupta K S, and Evashrayee N J. Un-length-based test data compression techniques: how far from entropy and power bounds a survey[J]. VLSI Design, 2010(1): 1-9.
  • 2Anshuman C and Krishnendu C. Frequency-Directed Run- length(FDR) codes with application to system-on-a-chip test data compression[C]. Proceedings of the 19th IEEE VLSI Test Symposium, Atlantic, 2001: 42-47.
  • 3EL-Maleh A H. Test data compression for system-on-a-chip using Extended Frequency-Directed Run-Length Code[J]. IET Computers : Digital Techniques, 2008(2): 155-163.
  • 4Dauh T W and Jen L L. Test data compression using multi-dimensional pattern run-length codes[J]. Journal Electron Test, 2010, 26(3): 393-400.
  • 5Ye B, Zhao Q, Zhou D, et al: Test data compression using alternating variable run-length code[J]. INTEGRATION, the VLSI Journal, 2011(44): 103-110.
  • 6Gonciari P T, AI-Hashimi B M, and Nicolici N. Variable- length input Huffman coding for system-on-a-chip test[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(6): 783-789.
  • 7EL-Maleh A H. Efficient test compression technique based on block merging[J]. IET Computer & Digital Techniques, 2008, 5(2): 327-335.
  • 8Zhang L and Kuang 3 S. Test data compression using selective sparse storage[J]. Journal Electron Test, 2011, 27(4): 565-577.
  • 9Sismanoglou P and Nikolos D. Test data compression based on reuse and bit-flipping of parts of dictionary entries[C].Proceedings of 17th International Symposium on Design and Diagnostics of Electronic Circuits K: Systems, Warsaw, 2014: 110-115.
  • 10Tyszer J, Filipek M, Mrugalski G, et al: New test compression scheme based on low power BIST[C]. Processdings of 18th IEEE European Test Symposium, Avignon, 2013: 1-6.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部