期刊文献+

动态多子群QPSO算法及其在机车粘着优化控制中的应用 被引量:2

Dynamic multiple sub-population QPSO algorithm and its application in optimized adhesion control of locomotive
下载PDF
导出
摘要 针对列车重载和高速运行时轮轨间粘着存在极限状态以及此时最优粘着利用能否获得的问题,利用所提出的动态多子群QPSO算法训练神经网络,并基于训练好的神经网络设计了机车粘着智能优化控制器,通过对电机转矩的动态调整,实现了轮轨间粘着的最优利用。仿真研究中,利用典型测试函数对所提出的动态多子群QPSO算法进行性能测试,证明该算法具有相对较高的寻优精度和效率,能有效提高神经网络的收敛速度和学习能力,将该算法应用于机车粘着优化控制中,得到了良好的控制效果。 Wheel-rail adhesion often reaches its limit states when heavy-haul and high-speed trains traveling. In order to obtain the maximum adhesive force utilization, this paper put forward a dynamic multiple sub-population QPSO algorithm to evolve a neural network, and designed the intelligent optimization controller based on the network to implement the optimized adhesion control of locomotive. By dynamically adjusting the motor torque, it achieved the optimal wheel-rail adhesion force. In simulation study, this paper used a typical test function to test the performance of the dynamic multiple sub-population QPSO algorithm. The simulation results demonstrate the relatively high accuracy and efficiency of the algorithm, and prove that the algorithm can improve the convergence speed and learning ability of the neural network, at the same time, in optimized adhesion control of locomotive, the intelligent optimization controller can also get a good control effect.
出处 《计算机应用研究》 CSCD 北大核心 2014年第10期3020-3023,3027,共5页 Application Research of Computers
基金 国家自然科学基金项目(11162007) 甘肃省自然科学基金项目(1308RJZA149)
关键词 智能计算 动态多子群QPSO算法 神经网络 粘着优化控制 intelligent computation dynamic multiple sub-population quantum-behaved particle swarm optimization algo- rithm neural network optimized adhesion control
  • 相关文献

参考文献18

二级参考文献141

共引文献131

同被引文献23

  • 1高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 2沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 3张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 4孟红记,郑鹏,武荣阳,谢植.基于改进PSO算法的连铸二冷过程优化仿真[J].系统仿真学报,2006,18(4):866-869. 被引量:6
  • 5高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 6Kran Mu S, Gi3ndtiz M. A recombination--based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems [J]. Applied Soft Computing. 2013, 13 (4): 2188-2203.
  • 7Elsayed S M, Sarker R A, Sarker E. Self--adaptive mix of particle swarm methodologies for constrained optimization [J]. Information Sciences. 2014, 27 (1): 216-233.
  • 8Suresh K, Kumarappan N. Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling prob- lem [J]. Swarm and Evolutionary Computation, 2013, 4 (9) : 69 -89.
  • 9Zhang Z B, Jiang Y Z, Zhang S H. An adaptive particle swarm opti- mization algorithm for reservoir operation optimization [J]. Applied Soft Computing, 2014, 5 (18) : 16-27.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization [C]//Proceedings of the IEEE International Conference on Neural Networks Piscataway, N J, USA: IEEE Press, 1995.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部