期刊文献+

一种基于队列机制的神经密码学的新学习规则 被引量:3

New learning rule of neural cryptography based on queue mechanism
下载PDF
导出
摘要 针对神经密码学中现有队列机制学习规则安全性不足的问题,提出了一种新的安全性更高的学习规则。该学习规则修改了原学习规则改变权值的幅度,使权值修改的幅度不会因为突触深度的增加而增加,从而避免了因权值修改的幅度过大使神经密码的安全性降低。最后利用概率统计实验对该学习规则在简单攻击和几何攻击下的安全性进行仿真。实验结果证明该学习规则与改进前的学习规则和经典学习规则相比,安全性均有所提高。 For the problem of inadequate security of the existed queue learning rule, this paper proposed a new security-en- hanced learning rule. The learning rule modified the magnitude of the weight change of the original learning rule so that the magnitude of the weight change didn' t increase with the addition of the synaptie depth, thus avoiding decreasing the security of the neural password because of the excessive weight change magnitude. Finally, the paper used the experiments of probabi- lity and statistics to simulate the learning rule under the simple attack and the geometric attack. Experimental results show that compared with the original queue learning rule and the Hebbian learning rule, the security of the new queue learning rule has an improvement.
出处 《计算机应用研究》 CSCD 北大核心 2014年第10期3095-3099,共5页 Application Research of Computers
关键词 神经密码 学习规则 突触深度 几何攻击 简单攻击 neural password learning rule synaptic depth geometric attack simple attack
  • 相关文献

参考文献18

  • 1KINZEL W, KANTER I.Interacting neural networks and cryptography[C]//Advances in Solid State Physics.Berlin:Springer,2002:383-391.
  • 2KANTER I, KINZEL W, KANTER E.Secure exchange of information by synchronization of neural networks[J].Europhysics Letters,2002,57(1):141-147.
  • 3ROSEN-ZVI M, KANTER I, KINZEL W.Cryptography based on neural networks-analytical results[J].Journal of Physics A:Mathematical and General,2002,35(47):707-713.
  • 4ROSEN-ZVI M, KLEIN E, KANTER I, et al.Mutual learning in a tree parity machine and its application to cryptography[J].Physical Review E,2002,66(6):066135.
  • 5REYES O M, KOITZKE I, ZIMMERMANN K H.Permutation parity machines for neural synchronization[J].Journal of Physics A:Mathematical and Theoretical,2009,42(19):195002.
  • 6SEOANE L F, RUTTOR A.Successful attack on permutation-parity-machine-based neural cryptography[J].Physical Review E,2012,85(2):025101.
  • 7METZLER R, KINZEL W, KANTER I.Interacting neural networks[J].Physical Review E,2000,62(2):2555.
  • 8RUTTOR A, KINZEL W, NAEH R, et al.Genetic attack on neural cryptography[J].Physical Review E,2006,73(3):036121.
  • 9RUTTOR A, KINZEL W, KANTER I.Dynamics of neural cryptography[J].Physical Review E,2007,75(5):056104.
  • 10RUTTOR A, REENTS G, KINZEL W.Synchronization of random walks with reflecting boundaries[J].Journal of Physics A:Mathematical and General,2004,37(36):8609.

二级参考文献15

  • 1METZLER R, KINZEL W, KANTER I. Interacting neural networks [J]. Physics Review E, 2000, 62(2): 2555-2565.
  • 2KINZEL W, METZLER R, KANTER I. Dynamics of interacting neural networks [ J]. Journal of Physics A: Mathematical and Gen- eral, 2000, 33(14): L141-L147.
  • 3KINZEL W, KANTER I. Interacting neural networks and cryptogra- phy [ M]// KRAMER B. Advances in Solid State Physics. Berlin: Springer, 2002, 42:381-391.
  • 4ROSEN-ZVI M, KANTER I, KINZEL W. Cryptography based on neural networks--analytical results [ J]. Journal of Physics A: Mathematical and General, 2002, 35(47): L707- L713.
  • 5RuTroR A, KINZEL W, SHACHAM L, et al. Neural cryptogra- phy with feedback [J]. Physics Review E, 2004, 69(4): 046110.
  • 6RUTTOR A, KINZEL W, KANTER 1. Neural cryptography with queries [ J]. Journal Statistical Mechanics: Theory and Experiment, 2005, 2005(1): 01009.
  • 7KANTER I, KINZEL W, KANTER E. Secure exchange of informa-tion by synchronization of neural networks [ J]. Europhysics Letters, 2002, 57(1): 141-147.
  • 8KLIMOV A, MITYAGUINE A, SHAMIR A. Analysis of neural cryptography [ C]//ASIACRYtrl"02: Proceedings of the 8th Inter- national Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology. Berlin: Springer, 2003:823-828.
  • 9SHACHAM L N, KLEIN E, MISLOVATY R, et al. Cooperating attackers in neural cryptography [ J]. Physics Review E, 2004, 69 (6) : 066137.
  • 10RUTTOR A, KINZEL W, NAEH T, et al. Genetic attack on neu- ral cryptography [J]. Physics Review E, 2006, 73(3): 036121.

共引文献1

同被引文献15

  • 1蔡家楣,刘多,陈铁明.神经网络密码学研究综述[J].计算机应用,2007,27(B06):219-222. 被引量:7
  • 2DIFFIE W,HELLMAN M E.New directions in cryptography[J].IEEE Transactions on Information Theory,1976,22(6):644-654.
  • 3ROSEN-ZVI M,KANTER I,KINZEL W.Cryptography based on neural networks-analytical results[J].Journal of Physics A:Mathematical and General,2002,35(47):707-713.
  • 4ROSEN-ZVI M,KLEIN E,KANTER I,et al.Mutual learning in a tree parity machine and its application to cryptography[J].Physical Review E,2002,66(6):135-138.
  • 5VOLKMER M,WALLNER S.Tree parity machine rekeying architectures[J].IEEE Transactions on Computers,2005,54(4):421-427.
  • 6RUTTOR A,KINZEL W,NAEH R,et al.Genetic attack on neural cryptography[J].Physical Review E,2006,73(3):132-136.
  • 7SHACHAM L N,KLEIN E,MISLOVATY R,et al.Cooperating attackers in neural cryptography[J].Physics Review E,2004,69(6):5-11.
  • 8MISLOVATY R,PERCHENOK Y,KANTER I,et al.Secure key-exchange protocol with an absence of injective functions[J].Physical Review E,2002,66(6):102-108.
  • 9RUTTOR A,KINZEL W,KANTER I.Dynamics of neural cryptography[J].Physical Review E,2007,75(5):56-58.
  • 10RUTTOR A,KINZEL W,SHACHAM L,et al.Neural cryptography with feedback[J].Physical Review E,2004,69(4):7-9.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部