期刊文献+

NADPH Oxidase-Dependent Formation of Reactive Oxygen Species Contributes to Transforming Growth Factor β1-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells,and the Role of Astragalus Intervention 被引量:3

NADPH Oxidase-Dependent Formation of Reactive Oxygen Species Contributes to Transforming Growth Factor β1-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells,and the Role of Astragalus Intervention
原文传递
导出
摘要 Objective: To investigate the role of nicatinamide-adenine dinucleotide phosphate (NADPH) oxidase- dependent formation of reactive oxygen species (ROS) in the transforming growth factor β1 (TGF-β 1)-induced epithelial-mesenchymal transition (EMT) in rat peritoneal mesothelial ceils (RPMCs), and the effect of Astragalus injection (AGI) intervention. Methods: Primary RPMCs were cultured to the second generation in vitro. After synchronization for 24 h, the calls were randomly assigned to the following groups: control (Group A), AGI (2 g/mL; Group B), TGF- β1 (10 ng/mL; Group C), TGF- β1 (10 ng/mL) + AGI (2 g/mL; Group D; pretreated for 1 h with AGI before TGF-β 1 stimulation). Reverse transcription-polymerase chain reaction (RT-PCR) and Westem blot analysis were employed to evaluate the mRNA and protein expression of the NADPH oxidase subunit p67phox, e-smooth muscle actin (α -SMA) and E-cadherin. The dichlorofluorescain-sensitive cellular ROS levels were measured by a fluorometric assay and confocal microscopy. Results: TGF- β1 significantly induced NADPH oxidase subunit p67phox mRNA and protein expression in RPMCs, as well as inducing the production of intracellular ROS. AGI inhibited this TGF- β1-induced up-regulation by 39.3% and 47.8%, respectively (P〈0.05), as well as inhibiting the TGF- β 1- induced ROS generation by 56.3% (P〈0.05). TGF- β 1 also induced α-SMA mRNA and protein expression, and down-regulated E-cadhedn mRNA and protein expression (P〈0.05). This effect was suppressed by AGI (P〈0.05). Conclusions: NADPH oxidase-dependent formation of ROS may mediate the TGF- β1-dependent EMT in RPMCs. AGI could inhib/t this process, providing a theoretical basis for AGI in the prevention of peritoneal fibrosis. Objective: To investigate the role of nicatinamide-adenine dinucleotide phosphate (NADPH) oxidase- dependent formation of reactive oxygen species (ROS) in the transforming growth factor β1 (TGF-β 1)-induced epithelial-mesenchymal transition (EMT) in rat peritoneal mesothelial ceils (RPMCs), and the effect of Astragalus injection (AGI) intervention. Methods: Primary RPMCs were cultured to the second generation in vitro. After synchronization for 24 h, the calls were randomly assigned to the following groups: control (Group A), AGI (2 g/mL; Group B), TGF- β1 (10 ng/mL; Group C), TGF- β1 (10 ng/mL) + AGI (2 g/mL; Group D; pretreated for 1 h with AGI before TGF-β 1 stimulation). Reverse transcription-polymerase chain reaction (RT-PCR) and Westem blot analysis were employed to evaluate the mRNA and protein expression of the NADPH oxidase subunit p67phox, e-smooth muscle actin (α -SMA) and E-cadherin. The dichlorofluorescain-sensitive cellular ROS levels were measured by a fluorometric assay and confocal microscopy. Results: TGF- β1 significantly induced NADPH oxidase subunit p67phox mRNA and protein expression in RPMCs, as well as inducing the production of intracellular ROS. AGI inhibited this TGF- β1-induced up-regulation by 39.3% and 47.8%, respectively (P〈0.05), as well as inhibiting the TGF- β 1- induced ROS generation by 56.3% (P〈0.05). TGF- β 1 also induced α-SMA mRNA and protein expression, and down-regulated E-cadhedn mRNA and protein expression (P〈0.05). This effect was suppressed by AGI (P〈0.05). Conclusions: NADPH oxidase-dependent formation of ROS may mediate the TGF- β1-dependent EMT in RPMCs. AGI could inhib/t this process, providing a theoretical basis for AGI in the prevention of peritoneal fibrosis.
出处 《Chinese Journal of Integrative Medicine》 SCIE CAS 2014年第9期667-674,共8页 中国结合医学杂志(英文版)
基金 Supported by the Natural Science Foundation of Zhejiang Province,China(No.Y2101241)
关键词 epithelial-mesenchymal transition transforming growth factor β 1 reactive oxygen species NADPH oxidase ASTRAGALUS epithelial-mesenchymal transition, transforming growth factor β 1, reactive oxygen species, NADPH oxidase, astragalus
  • 相关文献

参考文献3

二级参考文献16

共引文献60

同被引文献6

引证文献3

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部