期刊文献+

基于HJ-1C SAR数据的辽东湾海冰分类 被引量:4

Approach to the classification of sea ice in Liaodong Bay using HJ-1C SAR data
下载PDF
导出
摘要 针对海冰遥感分类问题,使用我国首颗民用合成孔径雷达卫星环境一号星(HJ-1C)图像的S波段VV极化SAR数据进行辽东湾海冰分类,提出了一种针对单极化SAR数据的海冰分类方法。使用基于SAR数据的3种海冰信息作为分类依据,即灰度信息、灰度共生矩阵纹理信息及基于平整冰面积百分比提取的平整冰密集度信息。研究结果表明,平整冰密集度信息是区分碎冰和风致纹理粗糙开阔水的有效信息。使用最大似然法与决策树融合的分类方法可以有效地识别封冻期辽东湾海域的碎冰、平整冰和开阔水3种类型,为海冰分类提供了一种新思路。 Sea ice classification is an important basis for the sea ice forecast in that many parameters such as the maximum of sea ice extent can be derived from that. An approach to sea ice classification using HJ-1C SAR data, which is the first civil spaceborne SAR system of China, is presented in this paper. The data were S-band and VV polarized and acquired over Liaodong Bay. Three types of information were extracted from the SAR data, including the uncalibrated backscattering coefficients and the gray level co -occurrence matrices. Besides, the level ice concentration was introduced as the classification basis. It proves to be effective in sea ice classification, especially in the separation between brash ice and wind-roughened open water. Based on all the information, the authors implemented the classifier fusion which combines the maximum likelihood and the decision tree. With the optical data from HJ-1B for validation, a good result is obtained, in which the brash ice, level ice and open water are well distinguished.
出处 《国土资源遥感》 CSCD 北大核心 2014年第3期125-129,共5页 Remote Sensing for Land & Resources
基金 国家自然科学基金项目(编号:61132006)资助
关键词 海冰分类 合成孔径雷达(SAR) 密集度 sea ice classification synthetic aperture Radar(SAR) ice concentration
  • 相关文献

参考文献14

  • 1Uiboupin R,Sipelgas L,Raudsepp U.Sea ice concentration and type analysis from dual pol Radarsat-2 and MODIS images in the Baltic Sea[C]//2009 IEEE International Geoscience and Remote Sensing Symposium,IGARSS 2009.Cape Town:IEEE,2009,2:590-593.
  • 2Partington K C,Flach J D,Barber D,et al.Dual-polarization C-band radar observations of sea ice in the Amundsen Gulf[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(6):2685-2691.
  • 3Scheuchl B,Hajnsek I,Cumming I G.Model-based classification of polarimetric SAR sea ice data[C]//2002 IEEE International Geoscience and Remote Sensing Symposium,IGARSS'02.Toronto,Ontario,Canada:IEEE,2002,3:1521-1523.
  • 4Scheuchl B,Cumming I G.Potential of RADARSAT-2 for sea ice classification[C]//2002 IEEE International Geoscience and Remote Sensing Symposium,IGARSS'02.Toronto,Ontario,Canada:IEEE,2002,4:2185-2187.
  • 5Soh L K,Tsatsoulis C.Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):780-795.
  • 6Zakhvatkina N Y,Alexandrov V Y,Johannessen O M,et al.Classification of sea ice types in ENVISAT synthetic aperture Radar images[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(5):2587-2600.
  • 7Clausi D A,Qin A K,Chowdhury M S,et al.MAGIC:Map-guided ice classification system for operational analysis[C]//2008 IAPR Workshop on Pattern Recognition in Remote Sensing(PRRS 2008).Tampa,FL:IEEE,2008:1-4.
  • 8Ochilov S,Clausi D A.Operational SAR sea-ice image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4397-4408.
  • 9Yu Q Y,Moloney C,Williams F M.SAR sea-ice texture classification using discrete wavelet transform based methods[C]//2002 IEEE International Geoscience and Remote Sensing Symposium,IGARSS'02.2002,5:3041-3043.
  • 10Hara Y,Atkins R G,Shin R T,et al.Application of neural networks for sea ice classification in polarimetric SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(3):740-748.

同被引文献33

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部