期刊文献+

广义Korteweg-de Vries方程的数值行波解(英文)

Numerical Traveling Wave Solution for the General Korteweg-de Vries Equation
原文传递
导出
摘要 本文构造了求解广义Korteweg-de Vries(KdV)方程的新的指数型有限差分格式.利用该格式获得了一些近似行波解.数值解与精确解的比较显示了该格式的效率. A new exponential finite difference method is constructed and used for solving the general Korteweg - de Vries (KdV) equation. Some approximate traveling wave solutions are obtained. Comparisons between numerical traveling wave solutions and the exact solutions reveal the efficiency of the scheme.
作者 赵国忠
出处 《阴山学刊(自然科学版)》 2014年第4期5-10,共6页 Yinshan Academic Journal(Natural Science Edition)
基金 国家自然科学基金(11261035) 内蒙古高等学校科学研究基金重点项目(NJZZ12198) 内蒙古自然科学基金(2012MS0102)资助项目
关键词 广义KDV方程 指数型有限差分格式 行波解 General KdV equation Exponential finite difference method Traveling wave solution
  • 相关文献

参考文献13

  • 1Helal M A, Mehanna M S. A comparative study between two different methods for solving the general Korteweg -de Vries equation (GKdV) [ J ]. Chaos, Solitons & Fractals, 2007, 33 : 725 - 739.
  • 2Feng Z S, Knobel R. Traveling waves to a Burgers - Korte- weg - de Vries - type equation with higher - order nonlinear- ities [J]. J. Math. Anal. Appl., 2007, 328: 1435- 1450.
  • 3Zhang W G, Chang Q S, Jiang BG. Explicit exact solitary -wave solutions for compound KdV -type and compound KdV - Burgers - type equations with nonlinear term of any order [J]. Chaos, Solitons & Fractals, 2002, 13:311 - 319.
  • 4Feng Z. Traveling solitary wave solutions to evolution equa- tions with nonlinear terms of any order [ J ]. Chaos, Solitons & Fractals, 2003, 17:861 -868.
  • 5Li B, Chen Y, Qing Z H. Explicit exact solutions for new general two - dimensional KdV - type and two - dimension- alKdV - Burgers - type equations with nonlinear term of any order [J].J. Phys. A, 2002, 35:8253-8265.
  • 6Parkes E J, Duffy B R. An automated tanh -fucntion meth- od for finding solitat7 wave solutions to nonlinear evolution equations [J]. Comput. Phys. Comm., 1996, 98: 288- 300.
  • 7Parkes E J, Duffy B R. Traveling solitary wave solutions to a compound KdV- Burgers equation [ J] Phys. Lett. A, 1997, 229:217-220.
  • 8Wang M L. Exact solutions for a compound KdV - Burgers equation [J]. Phys. Lett. A, 1996, 213: 279-287.
  • 9Feng Z. On explicit exact solutions to the compound Burgers - Korteweg - de Vries equation [ J ]. Phys. Left. A, 2002, 293 : 57 - 66.
  • 10Khater A H, E1Kalaawy O H, Helal M A. Two new clas- ses of exact solutions for the KdV equation via Backlund transformations [ J ]. Chaos, Solitons & Fractals, 1997, 8 : 1901 - 1909.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部