期刊文献+

基于流形排序的社会化推荐方法 被引量:1

Social Recommendation Based on Manifold Ranking
原文传递
导出
摘要 提出一种基于流形排序和社会化矩阵分解的推荐方法,采用流形排序方法度量用户间的社会相似度,利用正则化技术构建用于评分矩阵因式分解的目标函数,将用户之间的偏好差异作为目标函数的惩罚项,从而将用户之间的社会相似性融入评分矩阵的低阶矩阵分解过程.实验结果表明,在大型的数据集上,该方法获得了比当前同类方法更好的推荐精度和更低的评分预测均方根误差/评分预测平均绝对误差(RMSE/MAE)值. A new recommendation method based on manifold ranking and social matrix factorization is proposed, in which the social similarities among users are calculated by means of manifold ranking, the objective function of ratings matrix factorization is constructed via the regularization technique, with the differences among users' preferences as the penalty of objective function, the social similarities are infused into the low-rank matrix factorization. Experiments show that this method achieves higher precisions and lower root mean square error/mean absolute error (RMSE/MAE) value than other that of cognate methods.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2014年第3期18-22,共5页 Journal of Beijing University of Posts and Telecommunications
基金 高等学校博士学科点专项科研基金资助项目(20130005110011) 北京市高等学校青年英才计划项目(71A1311172) 中央高校基本科研业务费专项项目
关键词 社会化推荐 流形排序 矩阵分解 social recommendation manifold ranking matrix factorization
  • 相关文献

参考文献7

  • 1Badrul S, George K, Joseph K, et al. Item-based collab- orative filtering recommendation algorithms [ C] //Proceedings of the 10th International Conference on World Wide Web. New York: [s.n.], 2001: 285-295.
  • 2Mohsen J, Martin E. A matrix factorization technique with trust propagation for recommendation in social net- works[ C ] //Proceedings of the 4th ACM Conference on Recommender Systems. 2010: 135-142.
  • 3Ma Hao, Irwin K, Michael R L. Learning to recommend with social trust ensemble [ C ]// Proceedings of the 32rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2009: 203-210.
  • 4Ma Hao, Zhou Dengyong, Liu Chao, et al. Recommen- der systems with social regularization [ C ] //Proceedings of the 4th ACM International Conference on Web Search and Data Mining. 2011 : 287-296.
  • 5Thomas H. Latent semantic models for collaborative filtering [ J ]. ACM Transactions on Information Systems (TOIS), 2004, 22(1): 89-115.
  • 6Ruslan S, Andriy M. Probabilistic matrix factorization [J ]. Advances in Neural Information Processing Sys- tems, 2008(20) : 1257-1264.
  • 7Zhou Dengyong, Jason W, Arthur G, et al. Ranking on data manifolds[ J]. Advances in Neural Information Pro- cessing Systems, 2003 (16) : 169-176.

同被引文献8

  • 1Chen Annie. Context-aware collaborative filtering system: predicting the user's preference in the ubiquitous compu- ting environment [ J]. Lecture Notes in Computer Science, 2005, 3479: 244-253.
  • 2Liu Fengkun, Lee H J. Use of social network information to enhance collaborative filtering performance [ J]. Ex- pert Systems with Applications, 2010, 37 (7) : 4772- 4778.
  • 3Yang Shuanghong, Long Bo, Smola A, et al. Like like a- like: joint friendship and interest propagation in social networks[ C]//Proceedings of the 20^th International Con- ference on World Wide Web. Bangalore India: ACM, 2011 : 537-546.
  • 4Hasan S, Zhan Xianyuan, Ukkusuri S V. Understanding urban human activity and mobility patterns using large- scale location-based data from online social media[ C ]// Proceedings of the 2^nd ACM SIGKDD International Work- shop on Urban Computing. Chicago USA: ACM, 2013: 1-8.
  • 5Ying Josh Jia-Ching, Lee W C, Ye Mao. User association analysis of locales on location based social networks [ C]/// Proceedings of the 3^rd ACM SIGSPATIAL Interna- tional Workshop on Location Based Social Networks. Chicago USA: ACM, 2011 : 69-76.
  • 6Yuan Quan, Cong Gao, Ma Zongyang. Time-aware point- of-interest recommendation [ C ]// Proceedings of the 36^th International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin Ireland: ACM, 2013 : 363-372.
  • 7Zheng Ning, Jin Xiaoming, Li Lianghao. Cross-region collaborative filtering for new point-of-interest recommen- dation [ C ]//Proceedings of the 22^nd International Confer- ence on World Wide Web Companion. Seoul Korea: [ s. n. ], 2013:45-46.
  • 8孙甲申,王小捷.一种用于社会化标签推荐的主题模型[J].北京邮电大学学报,2014,37(3):38-42. 被引量:4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部