摘要
High quality sub-monolayer, monolayer, and bilayer graphene were grown on Ru(0001). For the sub-monolayer graphene, the size of graphene islands with zigzag edges can be controlled by the dose of ethylene exposure. By increasing the dose of ethylene to 100 Langmuir at a high substrate temperature (800 ℃), high quality single-crystalline monolayer graphene was synthesized on Ru(0001). High quality bilayer graphene was formed by further increasing the dose of ethylene while reducing the cooling rate to 5 ℃/min. Raman spectroscopy revealed the vibrational states of graphene, G and 2D peaks appeared only in the bilayer graphene, which demonstrates that it behaves as the intrinsic graphene. Our present work affords methods to produce high quality sub-monolayer, monolayer, and bilayer graphene, both for basic research and applications.
High quality sub-monolayer, monolayer, and bilayer graphene were grown on Ru(0001). For the sub-monolayer graphene, the size of graphene islands with zigzag edges can be controlled by the dose of ethylene exposure. By increasing the dose of ethylene to 100 Langmuir at a high substrate temperature (800 ℃), high quality single-crystalline monolayer graphene was synthesized on Ru(0001). High quality bilayer graphene was formed by further increasing the dose of ethylene while reducing the cooling rate to 5 ℃/min. Raman spectroscopy revealed the vibrational states of graphene, G and 2D peaks appeared only in the bilayer graphene, which demonstrates that it behaves as the intrinsic graphene. Our present work affords methods to produce high quality sub-monolayer, monolayer, and bilayer graphene, both for basic research and applications.
基金
supported by the National Basic Research Program of China(Grant Nos.2013CBA01600 and 2011CB932700)
the National Natural Science Foundation of China(Grant Nos.61222112 and 11334006)