期刊文献+

Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy

Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy
下载PDF
导出
摘要 We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy (MBE), The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current-voltage (l-V) measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49 ± 0.03 eV and capture cross-section of 8,57 ×10^-18 cm^2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy (SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen-zinc vacancy complex in ZnO, We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy (MBE), The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current-voltage (l-V) measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49 ± 0.03 eV and capture cross-section of 8,57 ×10^-18 cm^2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy (SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen-zinc vacancy complex in ZnO,
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期364-368,共5页 中国物理B(英文版)
基金 supported by Fulbright-USA UNC-Charlotte
关键词 ZnO secondary ion mass spectroscopy PHOTOLUMINESCENCE Raman spectroscopy ZnO, secondary ion mass spectroscopy, photoluminescence, Raman spectroscopy
  • 相关文献

参考文献28

  • 1Qiang M, Teguh Endah S, Akihisa O and Masaaki N 2011 Appl. Phys. Lett. 98 051908.
  • 2Muhammad A, Khalid M, Ian F, Yasin A Raja, Ya-Hong X, Raphale T and M-Ali H 2013 Semicond. Sci. Technol. 28 105019.
  • 3Wang L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2011 Appl. Phys. Lett. 98 022106.
  • 4Sang Wuk L, Hak Dong C, Gennady P and Won T 2011 Appl. Phys. Lett. 98 093110.
  • 5Sushant G, Purushottam K, Arul C A, Doina C and Singh R K 2011 Appl. Surf. Sci. 257 5837.
  • 6Ying C and Fabien B 2010 Appl. Phys. Lett. 97 042108.
  • 7Dongqi Y, Lizhong H, Shuangshuang Q, Heqiu Z, Song-En Andy L, Len L K, Qiang F, Xi C and Kaitong S 2009 J. Phys. D: Appl. Phys. 42 055110.
  • 8Pan X H, Jiang J, Zeng Y J, He H P, Zhu L P, Ye Z Z, Zhao B H and Pan X Q 2008 J. Appl. Phys. 103 023708.
  • 9Qin J M, Yao B, Yan Y, Zhang J Y, Jia X P, Zhang Z Z, Li B H, Shan C X and Shen D Z 2009 Appl. Phys. Lett. 95 022101.
  • 10Lyons J L, Anderson J and Cress V W 2009 Appl. Phys. Lett. 95 252105.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部