摘要
In this work, the breakdown characteristics of AlGaN/GaN planar Schottky barrier diodes (SBDs) fabricated on the silicon substrate are investigated. The breakdown voltage (BV) of the SBDs first increases as a function of the anodeto-cathode distance and then tends to saturate at larger inter-electrode spacing. The saturation behavior of the BV is likely caused by the vertical breakdown through the intrinsic GaN buffer layer on silicon, which is supported by the post-breakdown primary leakage path analysis with the emission microscopy. Surface passivation and field plate termination are found effective to suppress the leakage current and enhance the BV of the SBDs. A high BV of 601 V is obtained with a low on-resistance of 3.15 mΩ·cm^2.
In this work, the breakdown characteristics of AlGaN/GaN planar Schottky barrier diodes (SBDs) fabricated on the silicon substrate are investigated. The breakdown voltage (BV) of the SBDs first increases as a function of the anodeto-cathode distance and then tends to saturate at larger inter-electrode spacing. The saturation behavior of the BV is likely caused by the vertical breakdown through the intrinsic GaN buffer layer on silicon, which is supported by the post-breakdown primary leakage path analysis with the emission microscopy. Surface passivation and field plate termination are found effective to suppress the leakage current and enhance the BV of the SBDs. A high BV of 601 V is obtained with a low on-resistance of 3.15 mΩ·cm^2.
基金
supported by the National Basic Research Program of China(Grant Nos.2010CB327504,2011CB922100,and 2011CB301900)
the National Natural Science Foundation of China(Grant Nos.60936004 and 11104130)
the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2011556 and BK2011050)
the Priority Academic Development Program of Jiangsu Higher Education Institutions,China