期刊文献+

基于遗传算法与评估模型的飞行载荷实测研究 被引量:20

Flight Load Measurement Based on Genetic Algorithm and Evaluating Model
原文传递
导出
摘要 为了得到飞行载荷实测所需的最优载荷方程,建立了可表征载荷方程数学意义和物理意义的评估模型,与遗传算法(GA)结合,以载荷方程评估驱动载荷方程建立,形成一种新的载荷方程建立方法——EMGA。通过建立某机翼根部剪力方程,比较了穷尽搜索(ES)法、传统GA和EMGA所建载荷方程的评估模型参数。最后将3种方法建立的方程用于飞行载荷实测。结果发现:和其他两种方法比较,本文提出的EMGA可得到最优的载荷方程;EMGA测得的飞行载荷分散性小,最优载荷方程的测量结果可作为最终的飞行载荷。 To obtain the optimum load equation for flight load measurement,load-equation-evaluating model is constructed which can represent the math and physics meanings of load equation.Based on the above model and genetic algorithm(GA),a new method of building load equation—EMGA is proposed by the evaluation of load equation driving the building of load equation.Exhaust research(ES)method,traditional GA and EMGA are used to build the shear equations of certain wing root,where the evaluating parameters of load equations obtained with three methods are compared.Moreover,those built equations with the three methods are applied to measure flight load.The results show that the EMGA can obtain the optimum load equation;the dispersion level of flight load using EMGA is lower than those using ES method and GA,and the measured result using the optimum load equation is regarded as the final measured flight load.
作者 赵燕
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第9期2506-2512,共7页 Acta Aeronautica et Astronautica Sinica
关键词 飞行载荷 应变计 遗传算法 载荷方程 评估模型 flight load strain gage genetic algorithm load equation evaluating model
  • 相关文献

参考文献17

  • 1CCAR-25-R4中国民用航空规章[S].北京:中国民航总局,2011.
  • 2Kwak D Y, Yoshida K. Flight test measurements of sur- face pressure on unmanned scaled supersonic experimental airplane[C]//24th Applied Aerodynamics Conference, 2006.
  • 3Skopinski T H, Aiken W S, Huston W B. Calibration of strain-gage installations in aircraft structures for measure- ment of flight loads, NACA Report l178[R]. Washing- ton, D. C. : NACA, 1954.
  • 4Jenkins J M, DeAngelis V M. A summary of numerous strain-gage load calibrations on aircraft wings and tails in a technology format, NASA Technical Memorandum 4804 [R]. Washington, D. C. : NASA, 1997.
  • 5William A, Stauf L R. Strain-gage loads calibration para- metric study, NASA/TM-2004-212853[R]. Washington, D. C:. NASA, 2004.
  • 6Lizotte A M, Lokos W A. Deflection-based aircraft struc- tural loads estimation with comparison to flight[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2005.
  • 7郭正旺,李昭广,王仲燕,贾庚仁,李俊.用内式六分量应变天平实测导弹挂飞载荷[J].航空学报,2010,31(7):1403-1409. 被引量:9
  • 8Cao X, Sugiyamae Y, Mitsui Y. Application of artificial neural networks to load identification[J]. Computer Structures, 1998, 69(1): 63-78.
  • 9何发东,舒成辉.贝叶斯正则化BP网络在机翼载荷分析中的应用[J].飞行力学,2009,27(4):85-88. 被引量:12
  • 10Padmanabhan M A, Nagesh K Y, Elattuvalappil H. A statistics based method for mapping flight strains to loads [C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conferece, 2006.

二级参考文献18

  • 1陈希 徐庆增 张汉良 等.贝叶斯正则化BP网络在热轧管控制中的应用.制造业自动化,2005,:471-474.
  • 2Allen Michael J, Dibley Ryan P. Modeling Aircraft Wing Loads from Fright Dada Using Neural Networks [ R ]. NASA-TM-212032,2003.
  • 3顾兴若,沈鸿桥,蒋进荣,等.GJB2244-1994 风洞应变天平规范[S].北京:国防科学技术工业委员会,1994.
  • 4吴淑兰,孙金慧,郭永幸,等.Q/FY.J01.13-1995试飞测试仪器环境条件及试验方法[S].西安:中国飞行试验研究院,1995.
  • 5王俊扬,汤国钧,李瑞生,等.GJB67.9-1985 军用飞机强度和刚度规范地面试验[S].北京:国防科学技术工业委员会,1985.
  • 6王记,许景铭,金兆丰,等.GJB67.10-1985 军用飞机强度和刚度规范飞行试验[S].北京:国防科学技术工业委员会,1985.
  • 7Alders A J.系留外挂物气动载荷的飞行测量[M] ∥飞机强度规范参考资料(十).李昭广,译.北京:航空总公司ASST系统工程办公室,1995:68-80.
  • 8Jarvis R.外挂物测力天平:F-14外挂物飞行载荷测量[M] ∥飞机强度规范参考资料(六).董作宝,赵海涛,译.西安:航空航天工业部飞行试验研究中心,1988:80-89.
  • 9Cenko A.估算外挂物挂飞载荷几种方法的评估[M] ∥飞机气动规范参考资料(十).王仲燕,译.北京:航空总公司ASST系统工程办公室,1995:81-89.
  • 10Skopinski T H, Aiken W S, Huston W B. Calibration of Strain- Gage Installations in Aircraft Structures for Measurement of Flight Loads[ R]. NACA Report 1178, 1954.

共引文献30

同被引文献93

引证文献20

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部