期刊文献+

基于贝叶斯因子和二阶概率方法的圣地亚热传导模型确认挑战问题

Sandia Model Validation Thermal Challenge Problem Based on Bayes Factor and Second-order Probability Method
原文传递
导出
摘要 针对美国圣地亚国家实验室为促进模型确认方法的发展所提出的热传导挑战问题,根据现代模型确认思想总结了该挑战问题解答中应包含的核心内容。在确认度量环节采用贝叶斯因子考察了实验数据是否支持所给模型,在此基础上通过二阶概率方法得到了模型预测的分布,以此计算出模型预测结论的置信度。该过程中考虑了模型参数的随机不确定性和认知不确定性,最后通过灵敏度分析辨识了模型参数的不确定性对模型预测的影响。研究表明该挑战问题中的实验数据支持所给模型,模型预测受导热系数的不确定性影响最大,模型预测材料在调控条件下的失效概率不满足调控要求,该结论的置信度为99.97%。 The objective of the thermal model validation challenge problem presented at American Sandia National Laboratory is to develop methodologies associated with model validation.The article summarizes the key content to answer this problem based on modern model validation idea.Bayes factor is employed as a validation metric to find whether the experimental data supports the model.The distribution of model prediction is obtained by the second-order probability method which propagates both aleatory uncertainty and epistemic uncertainty through the model,and the confidence of the model prediction is calculated from the distribution.Finally the article makes a sensitivity analysis with the model parameters to identify their effects on the prediction.The study indicates that the experimental data supports the given model,the thermal conductivity contributes most to the uncertainty in the model prediction,and with 99.97% confidence we can conclude that the failure probability of the material under regulatory condition predicted by the model doesn’t meet the regulatory criterion.
作者 赵亮 杨战平
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第9期2513-2521,共9页 Acta Aeronautica et Astronautica Sinica
基金 国防预研项目(426010401) 中国工程物理研究院科学技术发展基金(2012B0403058)~~
关键词 模型确认挑战问题 贝叶斯因子 确认度量 二阶概率方法 模型预测 灵敏度分析 model validation challenge problem Bayes factor validation metric second-order probability method model prediction sensitivity analysis
  • 相关文献

参考文献18

  • 1American Institute of Aeronautics and Astronautics. Guide for the verification and validation of computational fluid dynamics simulations, AIAA 1998-G-077[R]. Re- ston: AIAA, 1998.
  • 2American Society of Mechanical Engineers. ASME VV 20-2008 Standard for verification and validation in compu- tational fluid dynamics and heat transfer[S]. New York: ASME, 2008.
  • 3National Aeronautics and Space Administration. NASA- STD-7009 Standard for models and simulations[S]. Washington, D.C. : NASA, 2008.
  • 4Trucano T G, Swiler L P, Igusa T, et al. Calibration, validation, and sensitivity analysis: what's what[J]. Re-liability Engineering and System Safety, 2006, 91 (10- 11) : 1331-1357.
  • 5Roy C J, Oberkampf W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200 (25-28) : 2131- 2144.
  • 6Hills R G, Pileh M, Dowding K J, et al. Validation chal- lenge workshop[J]. Computer Methods in Applied Me- chanics and Engineering, 2008, 197(29-32): 2375-2380.
  • 7Dowding K J, Pileh M, Hills R G. Formulation of the thermal problem[J]. Computer Methods in Applied Me- chanics and Engineering, 2008, 197(29-32): 2385-2389.
  • 8McFarland J, Mahadevan S. Multivariate significance tes- ting and model calibration under uncertainty[J]. Comput- er Methods in Applied Mechanics and Engineering, 2008, 197(29-32) : 2467-2479.
  • 9Hills R G, Dowding K J. Multivariate approach to the thermal challenge problem[J]. Computer Methods in Ap- plied Mechanics and Engineering, 2008, 197(29-32): 2442-2456.
  • 10Ferson S, Oberkampf W L, Ginzburg L. Model validation and predictive capability for the thermal challenge problem [J]. Computer Methods in Applied Mechanics and Engi- neering, 2008, 197(29-32): 2408-2430:.

二级参考文献23

  • 1郭勤涛,张令弥,费庆国.结构动力学有限元模型修正的发展——模型确认[J].力学进展,2006,36(1):36-42. 被引量:70
  • 2邓小刚,宗文刚,张来平,高树椿,李超.计算流体力学中的验证与确认[J].力学进展,2007,37(2):279-288. 被引量:70
  • 3魏发远.复杂系统仿真模型的分层确认[J].计算机仿真,2007,24(7):82-85. 被引量:5
  • 4The American Society of Mechanical Engineers. ASME V&V 10 2006 Guide for verification & validation in computational solid meehanics[S]. New York.. ASME, 2006.
  • 5American Institute of Aeronautics and Astronautics. AIAA-G-077-1998 Guide for the verification and valida- tion of computational fluid dynamics simulations[S]. Re ston, VA: AIAA, 1998.
  • 6Oberkampf W L, Trucano T G. Verification and valida tion in computational fluid dynamics[J]. Progress in Aero- space Sciences, 2002, 38(3): 209-272.
  • 7National Aeronautics and Space Administration. NASA- STD-7009 Standard for models and simulations[S]. Washington, DC.- NASA, 2008.
  • 8The American Society of Mechanical Engineers. ASME V&V 20-2008 Standard for verification and validation in computational fluid dynamics and heat transfer[S]. New York: ASME, 2008.
  • 9Roy C J, Oberkampf W L. A complete framework for ve- rification, validation, and uncertainty quantification in sci- entific computing (invited)[R]. AIAA 2010 124, 2010.
  • 10Hills R G, Pilch M, Dowding K J, et al. Validation chal lenge workshop[J].Computer Methods in Applied Me chanics and Engineering, 2008, 197(29 32): 2375-2380.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部