期刊文献+

均匀线阵混合信源DOA估计与互耦误差自校正 被引量:2

DOA estimation for mixed signals and mutual coupling self-calibration for uniform linear array
下载PDF
导出
摘要 针对均匀线阵(uniform linear array,ULA)互耦条件下混合信源的波达方向(direction of arrival,DOA)估计问题,基于联合对角化算法,提出了一种基于3步实现的DOA与互耦系数估计新算法。首先利用互耦矩阵的Toeplitz结构实现混合信源中独立信源的DOA及互耦系数的粗估计;然后结合斜投影及前后向空间平滑,实现混合信源DOA估计;最后以广义空间特征矩阵及混合信源DOA估计值为基础,提出一种非子空间类互耦系数自校正方法。计算机仿真结果表明,与同类算法相比,所提算法无论在DOA及互耦系数估计精度、还是在DOA估计成功率方面,均具有明显的优势,且对于高斯背景噪声具有普适性。 Based on the joint approximative diagonalization of eigen matrix,a novel algorithm which in-cludes three steps is proposed to estimate the direction-of-arrival (DOA)of mixed signals and the mutual cou-pling coefficient of the uniform linear array (ULA)in presence of the mutual coupling error.Utilizing the To-eplitz structure of the mutual coupling matrix,the coarse estimates of the DOAs of the uncorrelated signals among the mixed signals and mutual coupling coefficients are firstly obtained.Then the DOA estimates of the mixed signals are obtained based on the combination of the oblique projection with forward and backward spatial smoothing methods.Finally,a non-subspace method for mutual coupling self-calibration is presented by utili-zing the estimates of the generalized spatial feature matrix and the estimated mixed signal DOAs.The computer simulation results indicate that the proposed algorithm has much better performance in DOAs and mutual cou-pling coefficient estimation and the successful rate compared with the similar algorithm,and it is also universal for Gaussian background noises.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第9期1696-1701,共6页 Systems Engineering and Electronics
基金 国家科技重大专项(2014ZX03001009-003) 重庆市自然科学基金(CSTC 2010BB2417 2013JJB40001)资助课题
关键词 均匀线阵 混合信号 波达方向估计 互耦自校正 uniform linear array (ULA) mixed signals direction-of-arrival (DOA) estimation mutualcoupling self-calibration
  • 相关文献

参考文献16

  • 1Schmidt R O. Multiple emitter location and signal parameter es- timation[J]. IEEE Trans. on Antennas and Propagation, 1986, 34(3):276 - 280.
  • 2WANGBuhong,WANGYongliang,CHENHui,CHENXu.Robust DOA estimation and array calibration in the presence of mutual coupling for uniform linear array[J].Science in China(Series F),2004,47(3):348-361. 被引量:17
  • 3Ye Z F, Liu C. 2 - D DOA estimation in the presence of mutual coupling[J]. IEEE Trans. on Antennas and Propagation, 2008, 56(10) :3150 - 3158.
  • 4Fabrizio S, Alberto S. A novel online mutual coupling comensa tion algorithm for uniform and linear arrays[J]. IEEE Trans. on Signal Processing, 2007, 55(2) :560 - 573.
  • 5Lin M, Yang L X. Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual eoupling[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5 (1) : 315 - 318.
  • 6Jaffer A G. Constrained mutual coupling estimation for array calibraton[C]//Proc, of the 35th Asilomar Conference on Sig nal , Systems and Computers, 2001 : 1273 - 1277.
  • 7HU XiaoQin,CHEN Hui,WANG YongLiang,CHEN JianWen.A self-calibration algorithm for cross array in the presence of mutual coupling[J].Science China(Information Sciences),2011,54(4):836-848. 被引量:20
  • 8Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Trans. on Acoustics Speech and Signal Processing, 1985, 33(4) : 806 - 811.
  • 9Ye Z F, Dai J S. Spatial smoothing for direction of arrival esti- mation of coherent signals in the presence of unknown mutual coupling[J]. IET Signal Processing, 2011, 5(4): 418 - 425.
  • 10Liu F L, Wang J K, Sun C Y, et al. Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals[J]. IEEE Trans. on Antennas and Prop agation, 2012, 60(4): 2052-2062.

二级参考文献14

  • 1[1]Gupta, I. J., Ksienski, A. K., Effect of mutual coupling in the performance of adaptive arrays, IEEE Trans. on. AP, 1983, 31(6): 785-791.
  • 2[2]Yeh, C., Leou, M., Ucci, D. R., Bearing estimations with mutual coupling present. IEEE Trans. on. AP, 1989, 37(10): 1332-1335.
  • 3[3]Friedlander, B., Weiss, A. J., Direction finding in the presence of mutual coupling, IEEE Trans on AP, 1991, 39(3): 273-284.
  • 4[4]See, C. M. S., Poh, B. K., Parametric sensor array calibration using measured steering vectors of uncertain locations, IEEE Trans. SP, 1999, 47(4): 1133-1137.
  • 5[5]Svantesson, T., Mutual coupling compensation using subspace fitting, Proc. 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop, 2000, 494 -498.
  • 6[6]Svantesson, T., Modeling and estimation of mutual coupling in a uniform linear array of dipoles, Proc. ICASSP'99 Phoenix, USA, Mar 1999, 2961-2964.
  • 7[7]Svantesson, T., The effects of mutual coupling using a linear array of thin diploes of finite length, Proc. 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, Portland, USA, Sep 1998, 232-235.
  • 8[8]Jaffer, A. G.., Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration, Proc. IEEE Radar Conference, 2002, 294-297.
  • 9[9]Jaffer, A. G.., Constrained mutual coupling estimation for array calibration, Proc. 35th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, 2001, 1273-1277.
  • 10[10]Schmidt, R. O., Multiple emitter location and signal parameter estimations, IEEE Trans. AP. Mar, 1986, 34(3): 276-280.

共引文献32

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部