期刊文献+

LDPC码最优化译码算法

Optimization decoding algorithm for LDPC codes
下载PDF
导出
摘要 为了提高离散高斯信道下二进制低密度奇偶校验码(low-density parity-check code,LDPC)最优化译码算法的性能和效率,提出了一种改进的LDPC码最优化译码算法。首先,通过理论分析和数学推导,构建了译码问题的数学模型;然后,论证并给出了针对该模型的最优化译码算法;最后,基于VC6.0平台进行了译码的性能和效率仿真并与其他算法进行比较。仿真结果表明,在误码率性能和译码效率上,新算法优于改进前的算法;在误码率性能上,新算法也优于常用的最小和译码算法。仿真结果与理论分析吻合。 An improved optimization decoding algorithm is proposed for binary low-density parity-check (LDPC)codes under any discrete Gaussian channel.First,through theory analysis and mathematical deriva-tion,the mathematical model is constructed for the decoding problem.Then,the optimization decoding algo-rithm is demonstrated for the model.Finally,several simulations are carried out on VC6.0 for the algorithm’s decoding performance and efficiency and the comparison with other algorithms is made.The results show that the algorithm outperforms the former algorithm on either bit-error rate or decoding efficiency and also outper-forms the common min-sum algorithm on bit-error rate.The results are in good agreement with the analysis.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第9期1849-1853,共5页 Systems Engineering and Electronics
基金 国家部委基金(51310020401) 陕西省电子信息系统集成重点实验室基金(2011ZD09)资助课题
关键词 通信 译码 最优化 低密度奇偶校验码 communication decoding optimization low-density parity-check (LDPC) code
  • 相关文献

参考文献16

  • 1Feldman J. Using linear programming to decode binary linear codes[J]. IEEE Trans. on Information Theory, 2005, 51(3) : 954 - 972.
  • 2Jiao X P. Improved check node decomposition for linear pro- gramming decoding[J]. IEEE Cornmuications Letters, 2013, 17 (2) :377 -380.
  • 3Taghavi M H, Shokrollahi A, Siegel P H. Efficient implementation of linear programming decoding[J]. IEEE Trans. on In formation Theory, 2011, 57(9) :5960 - 5982.
  • 4David B. Improved linear programming decoding of LDPC codes and bounds on the minimum and fractional distance[J]. IEEE Trans. on Information Theory, 2011, 57(11) :7386-7402.
  • 5Vontobel P O, Koetter O. On low-complexity linear-program- ming decoding of LDPC codes[J]. European Transaction Tele- communication, 2007, 18(5):509 - 517.
  • 6Burshtein D. Iterative approximate linear programming decoding of LDPC codes with linear complexity[J]. IEEE Trans. on Information Theory, 2009, 55(11):4835-4859.
  • 7Khoa P T, Son T T, Tuan H D, et al. Monotonic optimization based decoding for linear codes[C]//Proc, of the IEEE Internation- al Conference on Acoustics, Speech and Signal Processing ,2006.
  • 8Kschischang F, Frey B. Factor graphs and the sum-product algorithm[J]. IEEE Trans. on Information Theory, 2001, 47 (2):599 - 618.
  • 9Chen Qian,Weilong Lei,Zhaocheng Wang.Low Complexity LDPC Decoder with Modified Sum-Product Algorithm[J].Tsinghua Science and Technology,2013,18(1):57-61. 被引量:2
  • 10Nima N, Martin J. Stochastic belief propagation., a low-complexity alternative to the sum-product algorithm [J]. IEEE Trans. on Information Theory, 2013, 59(4) : 1981 - 2000.

二级参考文献38

  • 1R. G. Gallager, Low-density parity-check codes, IEEE Trans. ln.f Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.
  • 2D. J. MacKay and R. M. Neal, Near shannon limit performance of low-density parity check codes, Electron. Lett., vol. 33, no. 6, pp. 457-458, Mar. 1997.
  • 3Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System, (in Chinese),, GB 20600-2006, Standardization Administration of the People's Republic of China. 2006.
  • 4Digital Video Broadcasting (DVB), Frame structure channel coding and modulation for a second generation digital terTestrial television broadcasting system (DVB-T2), ETSI EN 302 755 vl.l.1, Sept. 2009.
  • 5L. Dai, Z. Wang, and Z. Yang, Next-generation digital television terrestrial broadcasting systems: Key technologies and research trends, IEEE Commun. Magazine, vol. 50, no.6, pp. 150-158, Jun. 2012.
  • 6W. E. Ryan and S. Lin, Channel Codes: Classical and Modern, New York, NY, USA: Cambridge University Press, 2009.
  • 7D. J. MacKay, Good error-correcting codes based on very sparse matrices, IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
  • 8M. P. C. Fossorier, M. Mihaljevic, and H. Imai, Reducedcomplexity iterative decoding or low-density parity check codes based on belief propagation, IEEE Trans. Commun., vol. 47, no. 5, pp. 673-680, May 1999.
  • 9A. J. Felstrom and K. S. Zigangirov, Time-varying periodic convolutional codes with low-density parity-check matrix, IEEETrans. Inf. Theory, vol. 45, no.6, pp. 2181-2191, Sep. 1999.
  • 10J. Chen, Reduced complexity decoding algorithms for low-density parity check codes and turbo codes, Ph.D. dissertation, Dept. Electrical Engineering, The University of Hawaii, Honolulu, USA, 2003.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部