期刊文献+

新型双向加载MEMS微执行器动力学分析

Dynamic Analysis of New Biaxial Loading MEMS Micro Actuator
下载PDF
导出
摘要 传统横向单向加载MEMS静电微执行器存在位移过小或驱动电压过大等问题.本文提出一种纵横双向加载的新型硅基静电执行器模型.基于拉格朗日-麦克斯韦方程建立了微执行器动力方程,分析了边缘漏电场对静电力的影响,基于龙格-库塔算法将所有轴向载荷等效为轴向集中载荷,并分别仿真得到了变形与驱动电压、调节电压和轴向挤压量之间的关系,结果表明当驱动电压仅为16 V时,位移高达10.861μm,远大于目前传统横向加载单向变形微执行器的位移量.通过微型制造工艺加工了微执行器,利用高频信号采集了横向极板间的电压变化量,验证了仿真结果. Considering the problems of undersized displacement and oversized voltage in the MEMS elec- trostatic micro actuator of transverse loading, a silicon-based micro actuator model with characteristics of large-displacement and low-voltage was presented according to the principle of vertical-horizontal ben- ding. The dynamic equations of micro actuator with axial and transverse loading were built based on the Lagrange-Maxwell equations. The influence of edge leakage field on electrostatic force was analyzed. All of the axial loads were equivalently transformed into axial centralized load based on Runge-Kutta algo- rithm. The relationships between deformation and driving voltage, regulation voltage, and axial compression quantity were obtained by simulation separately. The simulation results show that the displacement reaches 10. 861μm when the driving voltage is 16 V, which is much larger than that of the existing micro actuators. The micro actuator was manufactured by micro fabrication technology. The simulation results are verified by comparing with the voltage variation realized by acquiring high frequency signal between transverse plates.
出处 《纳米技术与精密工程》 CAS CSCD 2014年第5期334-339,共6页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(61176130)
关键词 MEMS 微驱动器 拉格朗日-麦克斯韦方程 信号采集 MEMS micro actuator Lagrange-Maxwell equation signal acquisition
  • 相关文献

参考文献9

  • 1Reines I, La J, Rebeiz G M. Thin-film aluminum RF MEMS switched capacitors with stress-tolerance and temper- ature-stability [ J ]. Journal of Micro Electromechanical Sys- tems, 2010, 20(1 ):193-203.
  • 2Mahameed R, Rebeiz G M. A high-power temperature-sta- ble electrostatic RF MEMS capacitive switch based on a ther- mal buckle-beam design [J ]. Journal of Micro Electrome- chanical Systems, 2010, 19(4) : 816-826.
  • 3Patel C D, La J, Rebeiz G M. A RF-MEMS switch for high-power applications [ C ]//2012 IEEE MTT-S International Microwave Symposium Digest. Montreal, Canada, 2012, 6 : 1-3.
  • 4Laszczyk K, Bargiel S, and Gorecki C, et al. A two direc- tional electrostatic comb-drive X-Y micro-stage for MOEMS applications[J].Sensors and Actuators A: Physical, 2010, 163( 1 ) : 255-265.
  • 5Srinivasan P, Gollasch C, Kraft M. Three dimensional elec- trostatic actuators for tunable optical micro cavities [ J ]. Sensors and Actuators A: Physical, 2010, 161 ( 1 ) : 191- 198.
  • 6Sadeghi M, Kim H, Najafi K. Electrostatically driven micro- hydraulic actuator arrays [ C ]//Micro Eectro Mechanical Systems (MEMS) Conference. Hong Kong, China, 2010: 15-18.
  • 7Joshi S, Nayak M M, Rajanna K, et al. Flexible phynox al- loy with integrated piezoelectric thin film for micro actuation application [ C ]//IEEE Sensor Conference. Taipei, China, 2012:1-4.
  • 8陈俊收,尤政,李滨.桥式射频MEMS开关上电极薄膜的残余应力改进模型[J].纳米技术与精密工程,2011,9(1):16-20. 被引量:4
  • 9Guo M S, Dong S X, R B, et al. A double-mode piezoelec- tric single-crystal ultrasonic micro-actuator [ J ]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Society, 2010, 57( 11 ) : 2596-2600.

二级参考文献12

  • 1Kim H C,Chun K.RF MEMS technology[J].IEEJ Transactions on Electrical and Electronic Engineering,2007,2(3):249-261.
  • 2Pauleau Y.Generation and evolution of residual stress in physical vapour-deposited thin films[J].Vacuum,2001,61(2/3/4):175-181.
  • 3Cheng K J,Cheng S Y.Analysis and computation of the internal stress in thin films[J].Progress in Nature Science,1998,8(6):679-689.
  • 4Rebeiz G M.RF MEMS Theory,Design,and Technology[M].New Jersey:John Wiley & Sons,2003.
  • 5Sadehian H,Rezazadeh G,Abbaspour E,et al.The effect of residual stress on pull-in voltage of fixed-fixed end type MEM switches with variative electrostatic area[C] // Proceedings of the 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems.Zhuhai,China,IEEE,2006:1117-1120.
  • 6Rahman H U,Chan K Y,Ramer R.Investigation of residual stress effects and modeling of spring constant for RF MEMS switches[C] // Mediterrannean Microwave Symposium.Tangiers,Spain,IEEE,2009:1-4.
  • 7Roark R J,Young W C.Roark's Formulas for Stress and Strain[M].7th ed.New York:McGraW-Hill,2002.
  • 8Lishchynska M,OMahony C,Slattery O,et al.Comprehensive spring constant modelling of tethered micromechanical plates[J].Journal of Micromechanics and Microengineering,2006,16(6):61-67.
  • 9de Coster J,Tilmans H A C,den Toonder J M J,et al.Empirical and theoretical characterisation of electrostatically driven MEMS structures with stress gradients[J].Sensors and Actuators A:Physical,2005,123/124:555-562.
  • 10Sharma J,Dasqupta A.Effect of stress on the pull-in voltage of membranes for MEMS application[J].Journal of Micromechanics and Microengineering,2009,19(11):115021.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部