期刊文献+

拓展目标量测集合分割算法 被引量:3

A Partition Algorithm of Measurement Sets for Extended Objects
下载PDF
导出
摘要 针对拓展目标概率假设密度滤波器采用的量测集合所有可能分割方式在实际中几乎不能够实现的问题,提出了一种采用有限混合模型的量测集合近似分割算法,对所有可能分割方式进行近似处理。算法利用有限混合模型拟合量测集合以实现对量测集合的分割,首先利用期望极大化算法极大似然估计混合参数,然后利用量测来源的条件概率分割量测集合,最后以二维场景为例进行了仿真实验。仿真结果表明:新算法在所有时刻上的最优子模式分配和混合分量数目均小于现有的典型量测集合分割算法;在拓展目标跟踪性能上,新算法具有更好的多拓展目标跟踪性能。 An approximate partition algorithm of measurement sets is proposed to overcome the problem that it is impossible to implement all the possible partitions of a measurement set in density filters with extended object probability hypothesis,and the algorithm bases on a finite mixture model.The finite mixture model is used to fit the measurement set and then the partition of the measurement set is implemented.The expectation maximization algorithm is employed to obtain the maximum likelihood estimation of mixture parameters.Then,the conditional probability of the measurement source is applied in partitioning the measurement set.Simulation results show that the proposed algorithm is superior to typical partition algorithm of measurement sets in extended object tracking.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第9期19-23,29,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61304261) 江苏大学高级人才启动基金资助项目(12JDG076)
关键词 拓展目标跟踪 概率假设密度 量测集合分割 有限混合模型 extended object tracking probability hypothesis density measurement set partition finite mixture model
  • 相关文献

参考文献23

  • 1PULFORD G E.Taxonomy of multiple target tracking methods[J].IET Proceeding of Radar,Sonar and Navigation,2005,152(2):291-304.
  • 2BLACKMAN S,POPOLI R.Design and analysis of modern tracking systems[M].Norwood,USA:Artech House,1999.
  • 3BAR S Y,LI Xiaorong.Multitarget-multisensor tracking:principles and techniques[M].Storrs,USA:YBS Publishing,1995.
  • 4MAHLER R.Multi-target Bayes filtering via firstorder multi-target moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178.
  • 5MAHLER R.PHD filters of higher order in target number[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(4):1523-1543.
  • 6MAHLER R.Statistical multisource-multitarget information fusion[M].Norwood,USA:Artech House,2007.
  • 7MAHLER R,VO B T,VO B N.Forward-backward probability hypothesis density smoothing[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(1):707-728.
  • 8VO B N,VO B T,MAHLER R.Closed-form solutions to forward-backward smoothing[J].IEEE Transactions on Signal Processing,2012,60 (1):2-17.
  • 9闫小喜,韩崇昭.应用Dirichlet分布的概率假设密度多目标跟踪[J].西安交通大学学报,2011,45(2):6-10. 被引量:2
  • 10VO B N,SINGH S,DOUCET A.Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1224-1245.

二级参考文献18

  • 1CLARK D E, VO B N. Convergence analysis of the Gaussian mixture PHD filter [J]. IEEE Transactions on Signal Processing, 2006, 55(4):1204-1212.
  • 2MAHLER R. PHD filters of higher order in target number [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4) : 1523-1543.
  • 3VO B T, VO B N, CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter [J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567.
  • 4MAHLER R. A survey of PHD filter and CPHD filter implementations[EB/OL]. (2007- 04- 09) [2010- 05- 06]. http: // spiedigitallibrary, org/proceedings/resource/ 2 / psisdg/ 6560O_1.
  • 5FIGUEIREDO M, JAIN A K. Unsupervised learning of finite mixture models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (3) : 381-396.
  • 6ZIVKOVIC Z, HEUDEN F V D. Reeursive unsupervised learning of finite mixture models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 651-656.
  • 7HOFFMAN J, MAHLER R. Multitarget miss distance via optimal assignment [J].IEEE Transactions on Systems, Man, and Cybernetics: Part A, 2004, 34 (3): 327-336.
  • 8CLARK D E, BELL J. Multi-target state estimation and track continuity for the particle PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1441-1453.
  • 9PULFORD G E. Taxonomy of multiple target tracking methods [J]. lET Proceeding of Radar, Sonar and Navigation, 2005, 152(2): 291-304.
  • 10BLACKMAN S, POPOLI R. Design and analysis of modern tracking systems[M]. Boston, MA, USA: Arteeh House Publishers, 1999.

共引文献1

同被引文献31

  • 1王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145
  • 2GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a Gaussian-mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286.
  • 3MAHLER R. PHD filters for nonstandard targets: I extended targets [C]//Proceedings of the 12th Inter- national Conference on Information Fusion. Piscat-away, NJ, USA: IEEE, 2009: 915-921.
  • 4GRANSTROM K, LUNDQUIST C, ORGUNER U. A Gaussian mixture PHD filter for extended target tracking [C]//Proceedings of the 13th International Conference on Information Fusion. Piscataway, NJ, USA.. IEEE, 2010: 1-8.
  • 5ORGUNER U C, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized proba- bility hypothesis density filter [C]///Proceedings of the 14th International Conference on Indormation Fusion. Piscataway, NJ, USA.. IEEE, 2011: 5-8.
  • 6LIAN F, HAN C Z. Unified cardinalized probability hypothesis density filters for extended targets and un- resolved targets [J]. Signal Processing, 2012, 92(7).. 1729-1744.
  • 7ZHANG Y Q, JI H B. A novel fast partitioning algo- rithm for extended target tracking using a Gaussian mixture PHD filter [J]. Signal Processing, 2013, 93 (11) : 2975-2985.
  • 8TSAI C W, YANG C S, CHIANG M C. A time effi- cient pattern reduction algorithm for k-means based clustering [C] // IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2007: 504-509.
  • 9LIYX, XIAO H T, SONGZY. Anewmultipleex- tended target tracking algorithm using PHD filter [J]. Signal Processing, 2013, 93(7): 3578-3588.
  • 10肖宇,于剑.基于近邻传播算法的半监督聚类[J].软件学报,2008,19(11):2803-2813. 被引量:165

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部