期刊文献+

基于PMM多重插补法的线性模型系数估计量的模拟研究 被引量:5

On Estimators of Coefficients of Linear Regression Model Based on PMM Multiple Imputation
原文传递
导出
摘要 在利用含无回答的经济数据建立线性回归模型之前,选择PMM多重插补法给出无回答的插补值。模拟结果显示,在任意无回答机制下,随着插补重数增大,系数估计量的偏差和均方误差减小不显著。对于任意无回答率,建议插补重数为5。在完全随机无回答机制下,随着无回答率增加,系数估计量的偏差或均方误差增大往往不显著。然而,在随机无回答机制下或在非随机无回答机制下,随着无回答率增加,系数估计量的偏差和均方误差增大往往显著。 This paper estimates the coefficients of linear regression model by using the economics data containing the non-response, and selects PMM multiple imputation to give imputed values of the non-response. The simulation shows that under every non-response mechanism, the bias and mean squared error of the coefficients estimators do not obviously reduce as the multiplicity of imputation increases. The multiplicity of imputation is suggested as 5 for any non-response rate. Under completely random non-response mechanism, the bias and mean squared error of the coefficients estimators do not always obviously increase as non-response rate becomes large. However, under random non-response mechanism or under non-response not at random mechanism, the bias and mean squared error of coefficients estimators often significantly increase as the non-response rate becomes large.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2014年第10期139-150,共12页 Journal of Quantitative & Technological Economics
基金 国家社会科学基金重大项目"国家统计数据质量管理研究"(09&ZD040)的资助
关键词 插补法 无回答机制 无回答率 插补重数 Imputation Non-response Mechanism Non-response Rate Imputation Multiplicity
  • 相关文献

参考文献9

  • 1Graham J. W. , 2012, Missing Data : Analysis and Design [M], Springer.
  • 2Lessler J. T. , Kalsbeek W. D. , 1992, NonSampling Error in Surveys [M], John Wiley & Sons.
  • 3Little R. J. A. , Rubin D. B. , 2002, Statistical Analysis With Missing Data[M] John WileySons, Inc.
  • 4Marco Di Zio, Ugo Guarnera, 2009, Semi parametric Predictive Mean Matching[J], Advances in Statistical Analysis, 93 (2), 175-186.
  • 5Okafor F. C. , Lee H. , 2000, Double Sampling for Ratio and Regression Estimation with Subsam- pling the Nonrespondents [J], Survey Methodology, 26 (2), 183-188.
  • 6Schenker N. , Taylor J. M. G. , 1996, Partially Parametric Techniques for Multiple Imputation [J], Computational Statistics and Data Analysis, 22, 425-446.
  • 7金勇进、邵军:《缺失数据的统计处理》[M],中国统计出版社,2009.
  • 8王璐,王飞.Hot deck插补和插补后数据的方差模拟研究[J].数量经济技术经济研究,2006,23(2):148-152. 被引量:3
  • 9杨贵军,骆新珍.基于DA插补法的线性回归模型系数估计值的模拟研究[J].统计与信息论坛,2014,29(3):3-8. 被引量:5

二级参考文献16

  • 1J. N. K. Rao & J. Shao, Jackknife Variance Estimation with Survey Data Under Hot Deck Imputation, Biometrika [J]. Vol 79, No 4.
  • 2Wolter, K. M. (1985), Introduction to Variance. Estimation [M]. New York. Springer-Vetlag. J. Shao. (1995), The Jackknife and Bootstrap [M]. New York.. Springer-Verlag.
  • 3Oh, H.L. & Scheuren, F. J. (1983), Weighting adjustment for unit nonresponse LM], Incomplete Data in Sample Surveys, 2, New York, Academic Press.
  • 4Graham J W. Missing data[M]. New York:Springer, 2012.
  • 5倪家勋.抽样调查[M].孙山泽,译.北京:中国统计出版社,1997.
  • 6Hansen M H, Hurwitz W N. The Problem of Non--response in Sample Surveys[J]. Journal of the American Statistical Association, 1946, 41(236).
  • 7Politz A, Simmons W. An Attempt to get the "not at Homes" into the Sample Without Callbacks[J]. Journal of the American Statistical Association, 1949, 44(245).
  • 8Deming W E, Stephan F F. On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known[j]. The Annals of Mathematical Statistics, 1940(4).
  • 9Horvitz D G, Thompson D J. A Generalization of Sampling Without Replacement from a Finite Universe[J]. Journal of the American Statistical Association, 1952, 47(260).
  • 10Nordbotten S. Automatic Editing of Individual Statistical Observations [C]. Conference of European Statisticians Statistical Standards and Studies No. 2, New York: UN Statistical Commission for Europe, 1963.

共引文献5

同被引文献50

  • 1Alex Z Fu,唐艳,陈刚.倾向得分法综述[J].中国药物经济学,2008,0(2):27-34. 被引量:15
  • 2王璐,王飞.Hot deck插补和插补后数据的方差模拟研究[J].数量经济技术经济研究,2006,23(2):148-152. 被引量:3
  • 3孙中之,柳学周,徐永江,兰功刚,曲建忠,马学坤,蔡文超,关健.半滑舌鳎工厂化人工育苗工艺技术研究[J].中国水产科学,2007,14(2):244-248. 被引量:27
  • 4Rubin D. B.,1987,Multiple Imputation for Nonresponse in Survey [M],John Wiley &* Sons.
  • 5Lessler J. T.,Kalsbeek W. D.,1992,NonSampling Error in Surveys [M],John Wiley Sons.
  • 6Little R. J. A.,Rubin D. R,2002,Statistical Analysis with Missing Data [M],John Wiley &*Sons.
  • 7Okafor F. C.,Lee H.,2000,Double Sampling for Ratio and Regression Estimation with Subsam-pling the Nonrespondents [J],Survey Methodology,26 (2),183-188.
  • 8Graham J. W.,2012, Missing Data ; Analysis and Design [M],Springer.
  • 9Little R. J. A. , 1988,Missing Data in Large Survey ('with Discussion) [J],Journal of Businessand Economic Statistics, 6,287-301.
  • 10Schenker N.,Taylor J. M. G.,1996,Partially Parametric Techniques for Multiple Imputation[J],Computational Statistics and Data Analysis,22,425-446.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部