期刊文献+

基于窗口的Surf目标跟踪 被引量:1

Fast Surf object tracking based on window
下载PDF
导出
摘要 为解决Sift在目标跟踪中实时性不高的问题,提出了基于窗口的Surf目标跟踪方法.相比Sift目标跟踪,快速鲁棒尺度不变Surf在速度上有了一定的提高.为进一步提高算法的实时性,只对视频图像中包含目标的局部窗口提取Surf特征点.利用特征点之间的相对信息,采用仿射变换方法计算跟踪目标窗口的大小,并获得目标的大致位置信息,最后使用Kalman滤波器对窗口大小和位置信息平滑处理.实验结果表明,该方法在提升速度的同时,对目标发生尺寸变化及旋转等情况时能准确地跟踪物体. In order to solve the problem that the performance of Sift was not high in real-time, fast Surf object tracking based on window was proposed in this paper. Compared with Sift, Surf had a more improvement in computational efficiency. Further more, in order to improve the efficiency, the Surf features were extracted from local window that only contains the tracking object. Through utilizing the relative information among feature points and the affine transform, the size and position of the tracking window could be calculated. Finally, kalman filter was used to smooth information about the size and location. Experimental results showed that the proposed method could adapt to changes of scale and orientation of the tracking object when improving the computational efficiency.
作者 倪郁东 王晨
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第4期27-32,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60835001)
关键词 SIFT SURF KALMAN滤波器 窗口 目标跟踪 Sift Surf Kalman filter window tracking object
  • 相关文献

参考文献11

  • 1胡明昊,任明武,杨静宇.一种基于直方图模式的运动目标实时跟踪算法[J].计算机工程与应用,2004,40(3):71-74. 被引量:19
  • 2Lowe D.Object recognition from local scale-invariant features[C]∥International Conference on Computer Vision,1999:1150-1157.
  • 3Lowe D.Distinctive image features from scale invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 4Herbert B,Andreas E T.Speed-up robust features(surf)[J].Computer Vision and Image Understanding,2008(9):346-359.
  • 5Wei H,Yamashita T,Lu H G,et al.Surf tracking[C]∥International Conference on Computer Vision,2009:145-151.
  • 6Du K,Ju Y F,Jin Y L.Object tracking based on improved meanshift and sift[C]∥Ieee Conf on CECNet,2012:2716-2719.
  • 7Zhou D,Hu D.A robust object tracking algorithm based on Surf[C]∥Wireless Communications&Signal Processing(WCSP),2013.
  • 8Li R,Liu C X,Nian F Z.An object tracking algorithm based on global Surf feature[J].Journal of Information&Computational Science,2013,10(7):2159-2167.
  • 9黄帅,吴克伟,苏菱.基于Harris尺度不变特征的图像匹配方法[J].合肥工业大学学报(自然科学版),2011,34(3):379-382. 被引量:10
  • 10Tony L.Scale-space theory:a basic tool for analyzing structures at different scales[J].Journal of Applied Statistics,1994,21(2):224-270.

二级参考文献20

  • 1GC古德温.自适应滤波,预测与控制[M].科学出版社,1992..
  • 2[1]Moscheni F. Spatio-temporal segmentation and object tracking:An application to second generation video coding[D]. Lausanne: Swiss Federal Institute of Technology, 1997.
  • 3[2]Denzler J, Niemann H. Combination of simple vision modules for robust real-time motion tracking[J]. European Transaction on Telecommunications, 1995,6(3):121~137.
  • 4[3]Taubin G, Cooper D B. Object recognition based on moment(or algebraic) invariants[M]. MIT Press, 1992:375~397.
  • 5[4]Shalom Y B, Fortmann T E. Tracking and data association[M]. Academic Press, Inc., 1988.
  • 6Liu Hanzhou, Guo Beolong, Feng Zongzhe. Pseudo-Log Pofar Fourier transform for image registration[J]. IEEE Signal Processing Letters, 2006,13 ( 1 ) : 17-20.
  • 7Schmid C, Mohr R, Bauckhage C. Evaluation of interest point detectors [J]. International Journal of Computer Vi- sion, 2000,37 (2) :151- 172.
  • 8Harris C, Stephens M. A combined corner and edge detector [C]//Proceedings of the 4th Alvey Vision Conference. Manchester: The University of Sheffield Printing Unit, 1988: 147-151.
  • 9Mikolajczyk K, Schmid C. Indexing based on scale invariant interest points [C]//Proccdings of the 8th IEEE International Conference of Computer Vision. Vancouver: IEEE, 2001:525-531.
  • 10Mikolajczyk K,Schmid C. Scale and affine invariant interest point detectors [J]. International Journal of Computer Vi- sion,2004,60(1):63-86.

共引文献52

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部