期刊文献+

基于模型互更新的多模图像融合跟踪算法 被引量:2

Multimodal Image Fusion Tracking Algorithm Based on CoUpdate
下载PDF
导出
摘要 针对复杂环境下引起的目标失跟问题,提出了一种基于模型互更新的可见光与红外图像融合跟踪算法。基于把视觉跟踪问题视为"中心-周围"分类的思想,首先从可见光与红外图像中分别提取目标及周围像素点的特征,然后采用Boosting算法训练得到跟踪模型。基于分类结果计算像素点的置信度,采用决策级融合方法得到似然图像,通过均值漂移算法估计目标位置。最后在Co-Training框架下结合目标跟踪结果进行模型的互更新。实验结果表明,该算法提高了跟踪的鲁棒性,有效利用了多模图像的信息。 A visible and infrared image fusion tracking algorithm based on Co-Update is proposed in this paper to solve the problem of complex environment caused by the target tracking lost. Treating the visual tracking problem as the thought of "Center-Around" classification, the proposed algorithm extracts the pixels characteristics of the target and surrounding from the visible and infrared image first, and then obtains tracking model by the Boosting algorithm training. The confidence coefficient of pixels is calculated based on the classification results, decision level fusion method is adopted to get likelihood image, and the Meanshift algorithm is used to estimate target position. Finally in the Co-Training framework the target tracking results are combined with to Co-Update the tracking model. The experimental results show that the proposed algorithm can improve the robustness of tracking and use the multimode image information effectively.
出处 《红外技术》 CSCD 北大核心 2014年第9期705-709,共5页 Infrared Technology
基金 国家自然科学基金 编号:61174024 浙江省教育厅项目 编号:Y201223278
关键词 视觉跟踪 多模图像融合 决策级融合 模型互更新 visual tracking, multimodal image fusion, decision level fusion, CoUpdate
  • 相关文献

参考文献14

  • 1Collins T R, Liu Y, Leordeanu M. Online selection of discriminative tracking features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 2700): 1631-1643.
  • 2Avidan Shai. Ensemble tracking[C]//IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005:494-50 1.
  • 3Tang F, Brennan S, Zhao Q, et al. Co-Tracking using semi-supervised support vector machines[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009: 1-8.
  • 4Hu Weiming, Tan Tieniu, Wang Liang, et al. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on SMC(Part C), 2004, 34(3):334-352.
  • 5赵宗贵,雄朝华,王珂,等.信息融合概念、方法与应用[M].北京:国防工业出版社,2012.
  • 6Conaire C O, Cooke E, O'Connor N, et al. Background modelling in infrared and visible spectrum video for people tracking[C]//1EEE Conference on Computer Vision and Pattern Recognition, 2005: 20-26.
  • 7Jian Z, Cheung S. Human segmentation by fusing visible-light and thermal imaginary[C]//lEEE Conference on Computer Vision Workshops, 2009:1185-1192.
  • 8Leykin A, Hammoud R. Pedestrian tracking by fusion of thermal- visible surveillance videos[J]. Machine Vision and Applications, 2010, 21(4): 587-595.
  • 9Jianyu W, Xilin C, Wen G. Online selecting discriminative tracking features using particle filter[C]//lEEE Conference on Computer Vision and Pattern Recognition, 2005(2): 1037-1042.
  • 10Nguyen H T, Smeulders A W M. Robust tracking using foreground- background texture discrimination[C]//lnternational Journal of Computer Vision, 2006, 69(3): 277-293.

共引文献15

同被引文献14

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部