摘要
城市复杂背景边缘给空中红外小目标检测带来的非线性、非平稳热辐射信号影响严重。在采用k-最近邻分类判别决策的基础上,提出了一种基于核距离加权的k-最近邻红外小目标检测算法。该方法将每个预测窗口内的原始数据核映射到高维空间中进行分类,再对各近邻进行距离加权,遍历图像后得到预测结果。实验结果证明了该方法在抑制背景、增强目标方面都有较好的效果。
The obvious nonlinear and non-stable distribution which come from the edge of urban complex background have a great impact on infrared small target detection.By using the k-nearest neighbor discriminant classified deci-sion,an infrared small target detection algorithm based on kernel distance weighted k-nearest neighbor is proposed.The kernel method classifies the raw data of every predicted window by mapping into a high dimensional space,and the distance is weighted for nearest neighbor data.After cropping image,the predicted results can be calculated accu-rately.The experimental results show that the new method has a better performance in suppressing background and enhancing target.
出处
《激光与红外》
CAS
CSCD
北大核心
2014年第9期1060-1064,共5页
Laser & Infrared
基金
国家自然科学基金(No.61271376)
安徽省自然科学基金(No.1208085MF114)资助项目
关键词
城市防空
红外小目标检测
K-最近邻
核方法
距离加权
urban air defense infrared small target detection k-nearest neighbor kernel method distance weighted