期刊文献+

基于极限学习机的谐波电流检测方法

Harmonic Current Detection Algorithm Based on Extreme Learning Machine
下载PDF
导出
摘要 谐波电流检测的实时性和准确度直接影响有源电力滤波器的谐波补偿效果.针对基于传统神经网络谐波检测方法的不足,提出了一种基于极限学习机的谐波电流检测新方法.首先详细给出了极限学习机的训练样本的组成和训练方法,然后构造检测模型实现对谐波电流幅值和相位的检测.仿真结果表明,该谐波电流检测方法的检测精度普遍达到10-6,在有白噪声影响的情况下检测精度达到10-4,与基于传统神经网络的谐波检测方法相比具有更高的检测精度和更强的泛化能力,更加适用于谐波源固定的场合. The real-time and accuracy of harmonic current detection influenced the harmonic compensation performance of active power filter directly. A novel harmonic current detection algorithm based on extreme learning machine (ELM) was proposed to overcome the shortage of traditional neural network-based approach for harmonic current detection in this task. Firstly, the training sample composition and training method were presented in detail. Secondly, detection model was constructed to detect harmonic amplitude and phase. Finally, simulation results demonstrated that ELM-based approach could demonstrate better performances in some aspects than traditional neural network-based approach for harmonic current detection, such as computational complexity, calculation speed, the abilities of function approximation and generalization. And the proposed approach would be especially applied to fixed harmonic source.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2014年第3期91-95,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 高等学校博士学科点专项科研项目 编号20124101120001 河南省重点科技攻关项目 编号122102210503
关键词 极限学习机 谐波检测 谐波幅值 有源电力滤波器 extreme learning machine harmonic detection magnitude active power filter
  • 相关文献

参考文献10

二级参考文献35

  • 1王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法[J].电网技术,2005,29(3):72-75. 被引量:54
  • 2张惠忠.配电网高次谐波的产生和防止措施[J].电工技术,1992,.
  • 3张一中.电力谐波[M].成都:成都科技大学出版社,1990..
  • 4张惠忠,电工技术,1992年,19卷,2期
  • 5杨行峻,人工神经网络,1992年
  • 6张一中,电力谐波,1990年
  • 7蒋平,电力系统自动化,1995年,19卷,6期
  • 8刘玉田,电力系统自动化,1994年,18卷,4期
  • 9Chen Tianping,IEEE Trans Neural Netw,1993年,4卷,6期
  • 10Chen Tianping,IEEE Trans Neural Networks,1993年,4卷,6期,910页

共引文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部