摘要
在MQAM信号的调制识别中,传统聚类算法的聚类点数不准确,算法的迭代次数多且误差平方和函数曲线不平滑.针对此问题,提出了一种基于半监督聚类理论重构MQAM信号星座图的调制识别方法,通过标记部分样本点来指导隶属度及聚类中心的更新,再结合支持向量机(SVM)分类器,实现不同阶数MQAM信号的识别.仿真结果表明,该算法对MQAM信号的识别率大于90%,迭代次数少,误差平方和函数曲线平滑.
In the modulation classification of MQAM signals, clustering points based on traditional clustering algorithm is not accurate. The number of iterations of the algorithm is more and the error sum of squares func- tion curve is not smooth. To solve this problem, this paper presents a MQAM signal modulation recognition method based on semi-supervised clustering theory to reconstruct signal constellation diagram. By marking some sample points to guide the membership and updates of the cluster centers, combined with SVM classifica- tion, the different levels of MQAM signal' s recognition are realized. The simulation results show that the algo- rithm for MQAM signal recognition rate is greater than 90% , has less iteration and the error sum of squares function curve is smooth.
出处
《郑州大学学报(工学版)》
CAS
北大核心
2014年第4期83-87,共5页
Journal of Zhengzhou University(Engineering Science)
基金
国家自然科学基金资助项目(U1204604
61172086)
中国博士后基金资助项目(2012M511587)
河南省博士后基金资助项目(2011829)
河南省青年骨干教师基金资助项目
关键词
半监督聚类
调制识别
星座图
支持向量机
semi-supervised clustering
modulation classification
constellation diagram
support vector machine