期刊文献+

淮南矿区不同植物重金属修复能力研究 被引量:4

On the Repairing Capacity of Heavy Metals in Different Planting in Huainan Mining Area
下载PDF
导出
摘要 土壤重金属污染是当今面临的一个较为重要环境问题,而土壤重金属污染的植物修复则是治理污染环境的重要手段之一,以淮南市某煤矿复垦区为例,根据不同植物的重金属富集系数及其转移系数,研究分析不同植物对不同重金属的富集能力;结果表明:车前草对Cu、Ni、Cd、Hg和As元素的富集能力较强,狗尾巴草对As、Ni和Cd元素有较强的富集能力;苦苣菜对Cu、Mn、Ni、Cd、Hg和As元素具有较强的富集能力;芦苇对Cu、Ni、Cd和Hg元素的富集能力较强;车前草、狗尾巴草对Hg元素的转移能力强;苦苣菜对重金属元素的转移能力较差;芦苇对重金属元素(除了Ni以外)的具有较强转移能力。 Soil heavy metal pollution is a really important environmental problem ,and the phytoreme-diation of the soil heavy mental pollution is one of the important means to control contaminated environ-ment .Taking a coal mine reclamation area in Huainan as an example in this paper ,according to the en-richment coefficients and its transfer coefficient of heavy metals in different plants ,the accumulation abili-ty of different plants for different heavy metal is analyzed .The results show that :the accumulation ability of plantain for Cu ,Ni ,Cd ,Hg and As is stronger ,the accumulation ability of Sonchus oleraceus for Cu , Mn ,Ni ,Cd ,Hg and As is stronger ,the accumulation ability of reed for Cu ,Ni ,Cd and Hg is is stron-ger ;the transfer ability of plantain and dog's tail grass for Hg is stronger ,the transfer ability of Sonchus oleraceus for heavy metals is poorer ,the transfer ability of reed for heavy metals (in addition to Ni) is stronger .
出处 《淮南职业技术学院学报》 2014年第4期13-16,共4页 Journal of Huainan Vocational Technical College
基金 2013年安徽大学生创新创业训练计划项目
关键词 重金属 植物修复技术 富集能力 转移能力 heavy metal phytoremediation accumulation ability transfer ability
  • 相关文献

参考文献3

二级参考文献55

  • 1杨居荣,鲍子平.镉,铅在植物细胞内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268. 被引量:100
  • 2[1]Caros G,Itzia A.Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment[J].Bioresource Technology,2001,77:229-236.
  • 3[3]Scott D C,Dwid W O.Promises and prospects of phytore mediation[J].Plant Physiol,1996,110:715-719.
  • 4[6]Mengel K,Schbert S.Active extrusion of protrons into deionized water by roots of intract maize plants[J].Plant Physiol,1985,79:344-348.
  • 5[7]Krishnamurti G S R,Huang P M,Van Rees K C J,et al.Speciation of particulate-bound cadium of soils and its bioavaility[J].The Analyst,1995,120:661-689.
  • 6[11]Salt D E.Phytoremediation:a noval strately for the removal of toxic metals from the environment using plants [J].Bio/Technology,1995,13:468-474.
  • 7[12]Lasat M M,Baker A J M,Kochian L V.Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlapi[J].Plant Physiol,1996,112:1715-1722.
  • 8[13]Pineros M A,Shaff J E,Kochian L V.Development,characterization and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat[J].Plant Physiol,1998,116:1393-1401.
  • 9[14]Salt D E,Kramaer U.Mechanisms of metal hyperaccumulation in plants[A].Raskin H,Ensley B D.Phytore Mediation of Toxic Metals:Using Plants to Clear up the Environment[C].New York:John Wiley & Sons,2000.231-246.
  • 10[17]Kramer U,Pickering I J,Prince R C,et al.Subcellurlar localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J].Plant Physiol,2000,122:1343-1353.

共引文献72

同被引文献38

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部