期刊文献+

遗传扩展蚁群算法用于马斯京根模型参数估计 被引量:4

Genetic extended ant colony algorithm for parameter estimation of Muskingum routing model
下载PDF
导出
摘要 文章针对扩展蚁群算法收敛速度慢,易陷入局部最优缺点,对扩展蚁群算法提出改进策略,引入遗传算法产生初始解,加入局部细搜策略。根据解的权重改进解存储器中每个解权值,增加解的方向性,快速获得最优解,通过多个典型函数寻优确定方法有效性。利用改进后算法解决洪水演算马斯京根模型参数估计问题,通过与现有马斯京根模型参数估计方法对比,验证算法具有更好优化性能,为精确估计马斯京根模型参数提供更有效方法。 According to extended ant colony algorithm converging slowly and easily falling into local optimum, it presented some improved strategies:introduced genetic algorithm to produce the initial solution and join the local fine search strategy to avoid ants in local optimum and the weight of each solution improved by its' importance of the memory to get the optimal solution quickly and increase the direction. This paper used the improved algorithm to solve flood routing problem by parameter estimation of Muskingum routing model,by comparison with the existing parameter estimation of Muskingum routing method, validated algorithm has better optimize performance, and provide a more effective way to accurately estimating the parameters of Muskingum routing model.
出处 《东北农业大学学报》 CAS CSCD 北大核心 2014年第8期118-123,共6页 Journal of Northeast Agricultural University
基金 黑龙江省青年科学基金(QC2011C045)
关键词 遗传算法 扩展蚁群算法 连续空间优化 马斯京根模型 参数估计 genetic algorithm extended ant colony algorithm optimization of continuous space Muskingum routing model parameter estimation
  • 相关文献

参考文献12

二级参考文献40

共引文献93

同被引文献60

  • 1赵志贡,王卫东.马斯京根法流量演算系数的分析研究[J].东北水利水电,2006,24(7):21-23. 被引量:4
  • 2马海波,董增川,张文明,梁忠民.SCE-UA算法在TOPMODEL参数优化中的应用[J].河海大学学报(自然科学版),2006,34(4):361-365. 被引量:49
  • 3Sivanandam S N, Deepa S N. Introduction to Genetic Algorithm [M]. New York: Spfinger-verlag Berlin Heidelberg, 2008.
  • 4Velkatraman S, Yen G G. A genetic framework for constrainedoptimization using genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(4): 424-435.
  • 5Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press, 1975.
  • 6Tutkun N. Optimization of multimodal continuous functions using anew crossover for the real-coded genetic algorithms[J]. Expert Systems with Applications, 2010, 36(4): 8172-8177.
  • 7Cheng T M, Yan R Z. Integrating messy genetic algorithms and simulation to optimize resource utilization[J]. Computer-Aided Civil and Infrastructure Engineering, 2009, 24(6): 401-415.
  • 8Liu C Y. An improved adaptive genetic algorithm for the mtdti-depot vehicle routing problem with time window[J]. Journal of Networks, 2013, 8(5): 1035-1042.
  • 9Zhang L, Cat L B, Li M, et al. A method for least-cost QoS multicast routing based on genetic simulated annealing algorithm [J]. Computer Gommunications, 2009, 32(1): 105-110.
  • 10Chen X, Wang N. Optimization of short-time gasoline blending scheduling problem with a DNA based hybrid genetic algorithm [J]. Chemical Engineering and Processing, 2011, 49(10): 1076- 1083.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部