期刊文献+

图像分割的图论方法综述 被引量:22

A SURVEY ON GRAPH THEORY APPROACHES OF IMAGE SEGMENTATION
下载PDF
导出
摘要 图像分割是图像处理与计算机视觉领域的基本问题之一,其本身固有的不适定性是该领域研究的最大挑战。图像分割的图论方法充分利用图像的整体和局部特性,具有很大的灵活性,较高的计算效率及良好的分割特性,成为分割领域的一个新的研究热点。根据当前主要的几类基于图论的分割模型概括了图像分割图论方法的基本框架,包括图的映射和构造、分割准则及目标函数的设计及求解。系统综述了图像分割图论方法的每一类别的理论及研究进展。最后就图像分割图论方法中尚存的问题及未来的可能发展方向提出了见解。 Image segmentation is one of the fundamental problems in image processing and computer vision area. Its inherent ill-posedness is the greatest challenge of this research field. The graph theory approaches of image segmentation make full use of. global and local properties of the image, have quite big flexibility, higher computation efficiency and better segmentation property, and become the new focus of research in segmentation area. According to several major graph theory-based segmentation models at present, in this paper we summarise the basic framework of the graph theory approach of image segmentation, including the image mapping and construction, segmentation criteria as well as the design of and the solution of the target function. We give a systematic survey about the theories and research progress of each category in regard to graph theory approach of image segmentation. Finally, we offer our view on the problems existing in graph theory approach of image segmentation and the possible development direction in the future.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第9期1-12,44,共13页 Computer Applications and Software
基金 国家自然科学基金项目(61175004) 北京市自然科学基金项目(4112009) 北京市教委科技发展重点项目(KZ01210005007) 高等学校博士学科点专项科研基金项目(20121103110029)
关键词 图像分割 图割理论 最小生成树 最短路径 随机游走 Image segmentation Graph cut theory Minimum spanning tree Shortest path Random walk
  • 相关文献

参考文献125

  • 1Ellis W D.A sourcebook of gestalt psychology[M].Michigan:Hu-manities Press,1967.
  • 2Camiius K S,Govindan V K.A review on graph based segmentation[J].I.J.Image,Graphics and Signal Processing,2012(5):1-13.
  • 3Noma A,Graciano A B V,Consular.L,et al.A new algorithm for inter-active structural image segmentation[J].The Computing Research Re-pository,2008(1).
  • 4Hocha L M,Cappabianco F A M,Falcao A X.Data clustering as an op-timum-path forest problem with applications in image analysis[J].In-ternational Journal of Imaging Systems and Technology,2009,19(2):50-68.
  • 5Jifeng Ning,Lei Zhang,David Zhan,et al.Interactive image segmenta-tion by maximal similarity based region merging[J].Pattern Recogni-tion,2010,43:445-456.
  • 6Mortensen E.Interactive segmentation with intelligent scissors[J].Graphical Models and Image Processing,1998,60(5):349-384.
  • 7Falcao A X,Udupa J K,Miyazawa F K.An ultra-fast user-steered imagesegmentation paradigm:livewire on the fly[J].IEEE Transaction onMedical Imaging,2000,19(1):55-62.
  • 8De Miranda P A V,Falcao A X,Udupa J K.Synergistic arc-weight esti-mation for interactive image segmentation using graphs[J].ComputerVision and Image Understanding,2010,114(1):85-99.
  • 9Bai X,Sapiro G.Distance cut:interactive segmentation and matting ofimages and videos[C]//IEEE International Conference on Image Pro-cessing,San Antonio,Texas,2007:249-252.
  • 10Protiere A,Sapiro G.Interactive image segmentation via adaptive weigh-ted distances[J].IEEE Transactions on Image Processing,2007,16(4):1046-1057.

二级参考文献179

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4何源,罗予频,胡东成.基于测地线活动区域模型的非监督式纹理分割[J].软件学报,2007,18(3):592-599. 被引量:15
  • 5J C Gamiol ,S J Belongie,S Majumdar.Normalized Cuts for Spinal MRI Segmentation[C].In : Proc CARS 2002, Paris, France,2002.
  • 6A S Frangakis,R Hegerl.Segmentation of biomedical images with eigenvectors[C].In :Proc IEEE International Symposium on Biomedical Imaging, 2002 : 90-93.
  • 7C Florin,R Moreau-Gobard,J Williams.Automatic Heart Peripheral Vessels Segmentation Based on a Normal MIP Ray Casting Technique.Springer, 2004, LNCS 3216:483-490.
  • 8L Grady,G Funka-Lea.Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials.Springer, 2004 ,LNCS 3117:230-245.
  • 9J Shi,J Malik.Motion Segmentation and Tracking Using Normalized Cuts[C].In:Intl Conf on Computer Vision,1998.
  • 10J Park,H Zha,R Kasturi.Spectral Clustering for Robust Motion Segment ation,Springer, 2004, LNCS 3024:390-401.

共引文献224

同被引文献129

引证文献22

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部