期刊文献+

基于个人和社会隐含因子的社会化推荐 被引量:1

SOCIAL RECOMMENDATION BASED ON INDIVIDUAL AND SOCIAL LATENT FACTOR
下载PDF
导出
摘要 基于用户及其历史行为间关系的社会化推荐引起了广泛的关注,而现在的推荐模型几乎都忽略了社会关系的异质性和多样性。针对该不足,提出个人和社会隐含因子(ISLF)联合模型来进行社会化推荐的方法。该方法结合协同过滤和社交网络建模方法来进行社会化推荐,利用最新的混合隶属随机分块模型为每个用户提取相应的社会因子向量;并采用一种优化的期望最大化算法(EM算法)来优化ISLF模型,以便进行最快的期望计算;最后,基于真实的数据集豆瓣网来进行实验。结果表明该方法比现存的社会化推荐方法提供的推荐更准确,质量更高,效果更好。 The social recommendation based on users and relationship of their historical behaviours arouses wide attention, but almost all of the existing recommendation models ignore the heterogeneity and diversity of social relationship. In response to this deficiency, we proposed a social recommendation method with the joint model of individual and social latent factor ( ISLF ). The method combines collaborative filtering and social network modelling approach, utilises the latest mixture membership stochastic block model to extract vectors of social factors for each user. Moreover, it employs an optimised expectation maximisation algorithm (EM) to optimise ISLF model so as to carry out the fast expectation computation. Finally, we made the experiments based on real dataset-DouBan, results show that the new method proposed can provide more accurate recommendations with higher quality and better effect than current social recommendation methods.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第9期98-101,205,共5页 Computer Applications and Software
关键词 推荐系统 社会化关系 社会隐含因子 协同过滤 社交网络 Recommendation system Socialisation relationship Latent factor Collaborative filtering Social network
  • 相关文献

参考文献11

  • 1Adomavicius GjTuzhilin A.Toward the next generation of recommendersystems:A survey of the state-of-the-art and possible extensions[J].Knowledge and Data Engineering,IEEE Transactions on,2005,17(6):734-749.
  • 2Koren Y,Bell R,Volinsky C.Matrix factorization techniques for recom-mender systems[J].Computer,2009,42(8):30-37.
  • 3胡吉明.社会化推荐服务研究述评[J].情报科学,2011,29(2):308-311. 被引量:10
  • 4许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 5Liu F,Lee H J.Use of social network information to enhance collabora-tive filtering performance[J].Expert systems with applications,2010,37(7):4772-4778.
  • 6Ma H,Zhou D,Liu C,et al.Recommender systems with social regulari-zation[C]//Proceedings of the fourth ACM international conference onWeb search and data mining.ACM,2011:287-296.
  • 7Yang S H5Long B,Smola A,et al.Like like alike:joint friendship andinterest propagation in social networks[C]//Proceedings of the 20thinternational conference on World wide web.ACM,2011;537-546.
  • 8Airoldi E M,Blei D M,Fienberg S E,et al.Mixed membership stochas-tic blockmodels[J].The Journal of Machine Learning Research,2008(9):1981-2014.
  • 9Koren Y.Factorization meets the neighborhood:a multifaceted collabo-rative filtering model[C]//Proceedings of the 14th ACM SIGKDD in-ternational conference on Knowledge discovery and data mining.ACM,2008:426-434.
  • 10王亚芳.邻域保持判别非负矩阵分解[J].计算机工程与应用,2010,46(28):163-166. 被引量:3

二级参考文献117

共引文献567

同被引文献28

  • 1YANG X, GUO Y, LIU Y,et al. A survey of collaborative filteringbased social recommender systems [ J]. Computer Communications,2014,41(5) :1 - 10.
  • 2ADOMAVICIUSA, GEDIMINAS T. Toward the next generation ofrecommender systems: A survey of the state - of - the - art and possi-ble extensions [ J ] . IEEE Transactions on Knowledge & Data Engi-neering, 2005,17(6) :734 -749.
  • 3KONSTASI,STATHOPOULOS V,JOSE J M. On social networksand collaborative recommendation [ C ] // Proceedings of the 32n,i In-ternational ACM SIGIR Conference on Research and development inInformation Retrieval, Boston, Massachusetts : ACM, 2009 : 195 -202.
  • 4BOBADILLAJ, ORTEGA F, HERNANDO A, et al. Recommendersystems survey [ J ]. Knowledge - Based Systems,2013 , 46 (i ) : 109-132.
  • 5CHENC, ZENG J, ZHENG X,et al. Recommender system based onsocial trust relationships [ C ]//e - Business Engineering ( ICEBFJ ),32 -37.
  • 6K0NSTASI, STATHOPOULOS V, JOSE J M. On social networksand collaborative recommendation [ C ]//Proceedings of the 32 nd in-ternational ACM SIGIR conference on Research and development inInformation Retrieval, Boston, Massachusetts: ACM, 2009: 195 -202.
  • 7LIUF, LEE H J. Use of social network information to enhance col-laborative filtering performance [ J ]. Expert Systems with Applica-tions, 2010,37(7) :4772 - 4778.
  • 8PHAMM C,CAO Y,KLAMMA R, et al. A clustering approach forcollaborative filtering recommendation using social network analysis[J]. Journal of Universal Computerence, 2011, 17(4) ;583 -604.
  • 9LIU D, LAI C, CHIU H. Sequence -based trust in collaborative filtering for document recommendation[ J]. Intemational Joumal of Human - Computer Studies, 2011,69 ( 9 ) : 587 - 601.
  • 10Agarwal V,Bharadwaj K K. Trust - enhanced recommendation offriends in web based social networks using genetic algorithms tolearn user preferences [ M]//Trends in Computer Science, Engi-neering and Information Technology. Berlin Heidelberg: Springer ,2011: 476-485.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部