期刊文献+

基于自适应Lempel-Ziv复杂度的情感脑电信号特征分析 被引量:4

ANALYSING EMOTIONAL EEG SIGNALS FEATURE BASED ON ADAPTIVE LEMPEL-ZIV COMPLEXITY
下载PDF
导出
摘要 脑电信号是研究人类情感的主要手段之一。将Lempel-Ziv复杂度算法应用在脑电情感分类方面,并对其进行相应改进。针对脑电信号变化微弱的情况,在二值化过程对原有二值化方法进行改进,采用自适应方法调整信号分段区域,提取脑电情感数据特征,刻画了相邻点之间的相互关系和细节信息。探究不同情感状态下、不同电极复杂度的变化规律,采用SVM进行特征分类,验证了所提取特征的质量和有效性。 EEG signal is one of the primary means in studying human emotions.We apply the Lempel-Ziv complexity algorithm toemotional EEG classification,and make corresponding improvement on it.We improve the original binarisation method in binarisation processaiming at the situation of faint EEG signal variation,in it we use adaptive method to adjust signals’segmentation region,and extract EEGemotional data feature,which depicts the interrelationship between the adjacent points and the detailed information.We also explore thevariation rule in different emotional states and different electrode complexities,and classify the feature with SVM,as well as verify the qualityand effectiveness of the feature extracted.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第9期162-165,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61070077) 山西省自然科学基金项目(2010011020-2) 山西省研究生优秀创新项目(20113034)
关键词 脑电信号 自适应Lempel-Ziv复杂度 情感识别 特征提取 EEG signal AdaptiveLempel-Ziv complexity Emotion recognition Feature extraction
  • 相关文献

参考文献9

  • 1Koelstra S,Muhl C,Soleymani M,et al.DEAP:A Database for EmotionAnalysis Using Physiological Signals[J].IEEE Transactions on Affec-tive Computing,2012,3(1):18-31.
  • 2高诺,鲁守银,张运楚,姚庆梅.脑机接口技术的研究现状及发展趋势[J].机器人技术与应用,2008(4):16-19. 被引量:14
  • 3黄小娜,石砚.脑电EEG信号的分析方法[J].甘肃科技,2010,26(9):17-18. 被引量:7
  • 4Lempel A,Ziv J.On the Complexity of Finite Sequence[J].IEEETransactions on Information Theory,1976,22(1):75-81.
  • 5罗志增,曹铭.基于多尺度Lempel-Ziv复杂度的运动想象脑电信号特征分析[J].传感技术学报,2011,24(7):1033-1037. 被引量:14
  • 6DEAP Dataset[OL].http://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html.
  • 7Lin Yuanpin,Wang Ghihong,Wu Tienlin,et al.Support Vector Ma-chine for EEG Signal Classification during Listening to Emotional Mu-sic[C]//Multimedia Signal Processing on 2008 IEEE 30th Workshop,2008:127-130.
  • 8Sander Koelstra,Ashkan Yazdani,Mohammad Soleymani,et al.SingleTrial Classification of EEG and Peripheral Physiological Signals forRecognition of Emotions Induced by Music Videos[C]//BI'10 Pro-ceedings of the 2010 international conference on Brain informatics,2010,6334:89-100.
  • 9Chang C C,Lin C J.LIBSVM:A Library for Support Vector Machines[EB/OL].2001.http://www.csie.ntu.edu.tw/-cjlin/libsvm.

二级参考文献48

共引文献32

同被引文献26

  • 1赵腊生,张强,魏小鹏.语音情感识别研究进展[J].计算机应用研究,2009,26(2):428-432. 被引量:21
  • 2于万波,魏小鹏.一个小波函数指数参数变化的分岔现象[J].物理学报,2006,55(8):3969-3973. 被引量:9
  • 3林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98. 被引量:33
  • 4Picard R W. Affective Computing. London: M1T Press, 1997.
  • 5Daniel A, Roberto H, Pedro E, et al. Analysis of regu- larity in the EEG background activity of Alzheimer' s dis- ease patients with approximate entropy. Clinical Neuro- physiology, 2005, 116:1826-1834.
  • 6Labate D, Foresta F L, Morabito G, et al. Entropic measures of EEG complexity in alzheimer' s disease through a multivariate multiscale approach. IEEE Sensors Journal, 2013, 13 : 3284-3292.
  • 7Wu S D, Wu C W, Lee K Y, et al. Modified multiscale entropy for short-term time series analysis. Physical A, 2013, 392:5865-5873.
  • 8Li X L, Cui S Y, Voss L J. Using permutation entropy to measure the electroencephalographie effects of sevoflur- ance. Anesthesiology, 2008, 109(3) :448-56.
  • 9Li D, Li X L, Liang Z H, et al. Multiscale permutation entropy analysis of EEG recordings during sevoflurance anesthesia. Neural Eng, 2010, 7(4):046010.
  • 10Koelstra S, Muhl C, Soleymani M, et al. Deap: A data- base for emotion analysis using physiological signals. Af- fective Computing, 2012, 3( 1 ) : 18-31.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部