期刊文献+

一种基于局部保持的子流形可视化方法

A VISUALISATION METHOD FOR SUBMANIFOLDS BASED ON LOCALITY PRESERVING
下载PDF
导出
摘要 针对多数流形学习算法是基于单一流形的假设,当高维数据集中存在多个流形,流形学习算法可视化效果差问题,借鉴流形曲面在二维平面空间展开的思想提出基于局部保持的的子流形可视化方法。利用奇异值分解和k均值聚类方法将流形数据划分为多块子流形,计算第一流形切块中心与其余切块中心的拓扑结构关系,在目标低维空间保持上述中心间拓扑结构下逐一对流形切块投影展开,最后在人脸数据集上进行实验。实验结果表明:该方法较好保持了子流形内的数据间的拓扑结构。 Majority of the manifold learning algorithm are based on the assumption of single manifold,when the high dimensional data con-centrate in more than one manifold,the visual effect of the manifold learning algorithm becomes worse.Aiming at this problem and learningfrom the idea of expanding the manifold surfaces in two-dimensional flat space,we propose a locality preserving-based submanifold visualisa-tion method.It divides the manifold data into multi-block submanifolds using singular value decomposition and k-means clustering method,calculates the topology relationship between the centre of the first diced manifold block and the centres of the remaining blocks,and projectsthe diced manifold blocks one by one followed by expansion while maintaining the above topology structure between the centres in targeted low-dimension and targeted space;at last,the experiment is conducted on face data-sets.Experimental results demonstrate that this method betterkeeps the topology structure between the data in submanifolds.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第9期206-208,共3页 Computer Applications and Software
基金 中央高校基本科研业务费中国民航大学专项(ZXH2011C010)
关键词 流形切块 局部保持 奇异值分解 Diced manifold blocks Locality preserving Singular value decomposition
  • 相关文献

参考文献10

  • 1Jolliffe IT.Principl Compoment Analysis[M].New York:Springer.Verlag,1986.
  • 2Borgr I,Groenen P.Modem multidimensional scaling,theory and appli-cation[M].New York:Springer2 Verlag,1997.
  • 3Tenenbaum J,Silva V,Langford J.A global geometric framework for noiiiin-er dimensionality reduction[J].Science,2000,290(5500):2319-2322.
  • 4Roweis S,Saul L.Nonlinear dimensionality reduction by locally linearembedding[J].Science,2000,290(5500):2323-2326.
  • 5Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction anddata representation[J].Neural computation,2003,15(6):1373-1396.
  • 6Zhang Z,Zha H.Principal manifolds and nonlinear dimension reductionvia localtangent space alignment[J].SIAM Journal of Scientific Com-putiing,2009,26(1):313-338.
  • 7肖窨.高维空间模式鉴别分析及多流形学习[D].上海:上海交通大学电子信息与电气工程学院自动化系,2011.
  • 8侯文广,丁明跃.基于流形学习的三维空间数据网格剖分方法[J].电子学报,2009,37(11):2579-2583. 被引量:2
  • 9黄启宏,刘钊.流形学习中非线性维数约简方法概述[J].计算机应用研究,2007,24(11):19-25. 被引量:24
  • 10张学工.模式识别[M].北京:清华大学出版社,2000.

二级参考文献90

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部