期刊文献+

基于分层空间的Rao-Blackwellised化粒子滤波算法

RAO-BLACKWELLISED PARTICLE FILTER ALGORITHM BASED ON LAYERED SPACE
下载PDF
导出
摘要 针对于粒子滤波在目标跟踪里面粒子使用率低且单一等问题,提出一种基于分层空间的Rao-Blackwellised化粒子滤波算法。该算法通过Rao-Blackwell定理将线性变量边缘化从而减少状态空间维数,提高估计精度。在满足同等精度要求时,可大大减少所需粒子数目,因而大大降低计算负荷;分层理论可以把粒子空间分成多重空间,利用权重实现合理分配粒子,可以提高相关估计的准确性。实验结果表明,所提算法的均方根误差相比传统算法降低了50%,精确度在每个仿真时间内都有提高。 Concerning the problem of low and single particles utilisation rate of the particles filter in target tracking,we propose aRao-Blackwellised particle filter algorithm which is based on layered space.The proposed algorithm marginalises the linear variable throughRao-Blackwell theorem so as to reduce the state space dimensionality and to improve the estimation precision.It can greatly reduce thenumbersof particles required while meeting the same accuracy,thus the computational load is reduced greatly as well.The layered theory candivide the particle spaces into multidimensionality.It allocates the particles reasonably by using the weight and can improve the accuracy ofthe related estimation.Experimental results show that the root mean square error of the proposed algorithm reduces by 50% than thetraditionalalgorithm,and the accuracy was improved in each simulation time.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第9期209-212,共4页 Computer Applications and Software
基金 国家科技支撑计划项目(2007BAG06B06)
关键词 分层空间 Rao-Blackwell定理 粒子滤波 均方根误差 Layered space Rao-Blackwell theorem Particle filter Root mean square error
  • 相关文献

参考文献9

二级参考文献39

  • 1郭禾,李寒,王宇新,贾棋,刘天阳,唐骏.机器人三维定位系统中关键技术的研究[J].系统仿真学报,2006,18(z1):99-102. 被引量:6
  • 2黄庆成,洪炳熔,厉茂海,罗荣华.基于主动环形闭合约束的移动机器人分层同时定位和地图创建[J].计算机研究与发展,2007,44(4):636-642. 被引量:8
  • 3余洪山,王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人,2007,29(3):281-289. 被引量:14
  • 4R Smith, M Self, P Cheeseman. Estimating uncertain spatial relationships in robotics [M]. I J Cox, G T Wilfon, editors. Autonomous Robot Vehicles. Germany: Springer-Verlag, 1990: 167-193.
  • 5N Ayache, O Faugeras. Building, registrating, and fusing noisy visual maps [J]. Int. J. Robotics Research (S0278-3649), 1988, 7(6): 45-65.
  • 6R Chatila, J P Laumond. Position referencing and consistent world modeling for mobile robots [C]//Proc. IEEE Int. Conf. Robotics and Automation, 1985. USA: IEEE, 1985: 138-143.
  • 7S J Julier, J K Uhlmann. A counter example to the theory of simultaneous localization and map building [C]//IEEE International Conference on Robotics and Automation, 2001. USA: IEEE, 2001: 4238-4243.
  • 8J A Castellanos, J Neira, J D Tard'os. Limits to the consistency of EKF-based SLAM [C]// Germany: IFAC Symposium on Intelligent Autonomous Vehicles, 2004.
  • 9S Huang, G Dissanayake. Convergence analysis for extended Kalman filter based SLAM [C]//IEEE International Conference on Robotics and Automation, 2006. USA: IEEE, 2006.
  • 10T T Bailey, J Nieto, J Gttivant, M Stevens, E Nebot. Consistency of the EKF-SLAM algorithm [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. USA: IEEE, 2006: 3562-3568.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部