期刊文献+

矢量场逐次迭代的人-机身体交流控制 被引量:2

Control Algorithm of Successive Iteration of Vector Field for Physical Human-Robot Interaction
下载PDF
导出
摘要 为使人和机器人在身体交流中保持运动协调同步,提出了基于矢量场逐次迭代的人-机身体交流智能控制方法。对智能控制方法中具有任意目标轨迹的三维空间矢量场逐次迭代系统进行算法设计,使其输出的关节期望位移信号能与输入的扭矩信号保持同步,且同步强度要达到能实现参数可调的目的;分析了具备不同矢量场的两个逐次迭代系统的相互作用情况;以人和机器人身体交流的典型例子——下肢外骨骼助力机器人为对象,对该智能控制方法进行了应用仿真,并分析了关节扭矩成分对同步运动的影响。仿真结果表明该控制方法有效。 In order to synchronize motions between robot and human,a control method for physi-cal human-robot interaction was proposed by using successive iteration of vector field.The attractor corresponding with target trace of robot was introduced in 3 dimensional space.The vector field sys-tem with any target trajectory was designed by successive iteration for the 3D space,so that it could realize the synchronization between joint torque information as an input signal and desired trajectory of each robot joint as an output signal,and the strength of the synchronization could be varied by adjus-ting some internal parameters value in the vector field system.It was analyzed that the mutual inter-actions for two dynamics had different vector fields.Finally,the presented dynamics was applied to the control simulation of lower limb power-assisted robot,and it was analyzed that the j oint torque components influenced synchronous movement.Simulation results prove the validity of the proposed control method.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第17期2337-2343,共7页 China Mechanical Engineering
基金 国家留学基金委资助项目(2007102654) 重庆市自然科学基金资助项目(cstc2012jjA40028) 重庆市教委科学技术研究项目(KJ112203)
关键词 人和机器人身体交流 逐次迭代设计 矢量场 阈值 physical human-robot interaction successive iteration design vector field threshold value
  • 相关文献

参考文献11

  • 1Ikeura R, Inooka H. Variable Impedance Control of a Robot for Cooperation with a Human[C]//Pro- ceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1995:3097-3102.
  • 2Hirata Y, Takagi T, Kosuge K, et al. Motion Con trol of Multiple DR Helpers Transporting a Single Object in Cooperation with a Human Based on Map Information[C]//Proceedings of the IEEE Interana- tional Conference on Robotics and Automation. Pis- cataway, NJ, USA: IEEE, 2002:995-1000.
  • 3Marder E, Bucher D. Central Pattern Generators and the Control of Rhythmic Movements[J] Cur- rent Biology, 2001, 11(23): 986-996.
  • 4张益军,朱庆保,田恩刚.实现CPG模型的细胞神经网络的分支分析方法[J].控制理论与应用,2006,23(3):362-366. 被引量:4
  • 5Kotosaka S, Schaal S. A Model of the Neuro- Mus- culo-Skeletal System for Human Locomotion[J]. Biological Cybernetics, 1995,73(2) : 113-121.
  • 6Taga G. Synchronized Robot Motion by Neural Os- cillators[J]. Journal of the Robotics Society of Ja- pan, 2001, 19(1): 116-123.
  • 7谢光辉,梁锡昌,桥本稔,张霞,李伟.基于同步控制的人和机器人握手动力学仿真[J].机器人,2008,30(5):428-434. 被引量:5
  • 8Okada M, Tatani K, Nakamura, Y. Polynomial De- sign of the Nonlinear Dynamics for the Brain-like Infor- mation Processing of Whole Body Motion[C]//Pro- ceedings of the IEEE International Conference on Ro- botics and Automation. Washington D. C., USA: IEEE, 2002: 1410-1415.
  • 9Okada M, Nakamura D, Nakamura Y. Design of Dynamics-based Information Processing System for Humanoid Motion Generation [C]//Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Birateral Para- digms of Human and Humanoid. Las Vegas, Ne- vada, USA: IEEE, 2003: 126-142.
  • 10Naguyen P T A, Arimoto S, Han H Y. Computer Simulation of Dynamics of Dual Fingers with Soft- tips Grasping an Object[C]//Proceedings of the 2000 Japan/USA Symposium on Flexible Automa- tion. Newyork, NY, USA: ASME, 2000:1039- 1046.

二级参考文献20

  • 1林成森.数值计算方法[M].北京:科学出版社,1999..
  • 2ARENA P, FORTUNA L. Analog cellular locomotion control of hexapod robots [J]. IEEE Control Systems Magazine, 2002,22(6) :21 -36.
  • 3ARENA P, CAPONETTO R, FORTUNA L, et al. Cellular neural networks to explore complexity [J]. Soft Comput, 1997,1(3) :120 -136.
  • 4ARENA P, FORTUNA L, BRANCIFORTE M. Reaction-diffusion CNN algorithms to generate and control artificial locomotion [J].IEEE Trans on Circuits and Systems, 1999, 46(2) : 253 -260.
  • 5KUZNETSOV Y. Elements of Applied Bifurcation Theory [M].New York: Springer,Verlag, 1998.
  • 6Ikeura R, Inooka H. Variable impedance control of a robot for cooperation with a human[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 1995. 3097-3102.
  • 7Hirata Y, Takagi T, Kosuge K, et al. Motion control of multiple DR Helpers transporting a single object in cooperation with a human based on map information[A]. Proceedings of the IEEE Interanational Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2002. 995-1000.
  • 8Taga G. A model of the neuro-musculo-skeletal system for human locomotion. Ⅱ. Real-time adaptability under various constraints [J]. Biological Cybernetics, 1995, 73(2): 113-121.
  • 9Kotosaka S, Schaal S. Synchronized robot motion by neural oscillators[J]. Journal of the Robotics Society of Japan, 2001, 19(5): 580-583.
  • 10Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation[J]. Biological Cybernetics, 1985, 52(6): 367-376.

共引文献9

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部