期刊文献+

心电信号基线漂移去除方法研究 被引量:9

The method research on removing baseline wander of ECG
原文传递
导出
摘要 心电信号(ECG)是临床诊断各种疾病的重要依据,但由于基线漂移等噪声的存在影响了其诊断的准确性.根据基线信号的特点和固有模态函数(IMF)的性质,提出一种基于经验模态分解(EMD)结合形态滤波的自适应滤波方法.该方法先对信号进行经验模态分解,然后对所选择的IMF分量进行形态滤波处理,将滤波后的结果作为自适应滤波器的参考输入信号,最后得到的输出误差信号即为去除基线漂移后的心电信号.通过与普通的EMD方法、基于EMD的自适应滤波方法对比,并采用MIT-BIH数据库中的心电数据进行了检验,实验结果表明该方法对于去除心电基线有较好的效果. ECG was an important basis for clinical diagnosis of diseases. But the noises, such as baseline wander, affected the accuracy of ECG diagnosis. According to the properties of baseline wander and intrinsic mode function (IMF),a new method called adaptive filtering based on empirical mode decomposition (EMD) com- bined morphological filtering was proposed in the paper. First, ECG signal was decomposed into a series of IMFs by EMD, then those IMFs selected were processed further by the morphological filter. The filtering result was re- garded as the reference input signal. Finally, the error output signal was ECG signal removed the baseline wan- der. The proposed method was compared with common EMD, adaptive filter based on EMD, and it was tested by using MIT - BIH Database. The experiment results showed that the method was effective in removing ECG base- line wander.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期655-660,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61302054) 重庆市自然科学基金(cstc2011 jjA 40047 cstc2012 jjB 40010 cstc2012 jjA 40056)
关键词 心电信号 基线漂移 经验模态分解 形态滤波 自适应滤波 electrocardiogram (ECG) signal baseline wander empirical mode decomposition ( EMD ) mor- phological filtering adaptive filtering
  • 相关文献

参考文献12

  • 1ADDUSIB P S. Wavelet transforms and the ECG:a re- view [ J ]. Physiological Measurement, 2005,26 (5) : 155- 199.
  • 2CHOUHAN V S, MEHTA S S. Total removal of baseline drift from ECG signal [ C ]. International Conference on Computing: Theory and Applications ( ICCTA ' 07 ). Washington DC, USA, 2007 : 512 -515.
  • 3夏恒超,詹永麒.一种新的基于三次样条插值技术的心电图基线漂移消除方法[J].生物医学工程学杂志,2003,20(3):524-526. 被引量:16
  • 4Blanco - Velasco Manuel, WENG Binwei, BARNER Kenneth E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition [J]. Computers in Biology and Medicine, 2008, 38 (1) :1-13.
  • 5朱伟芳,赵鹤鸣,俞一彪.基于经验模态分解和Hilbert变换的QRS综合波检测算法[J].中国生物医学工程学报,2010,29(3):358-362. 被引量:6
  • 6SONG J Z, YAN H, LI Y J, et al. Research on electro- cardiogram baseline wandering correction based on wavelet transform, QRS barycenter fitting, and regional method [ J ]. Australasian Physical & Engineering Sci- ences in Medicine ,2010,33 (3) :279-283.
  • 7史健婷,黄剑华,张英涛,唐降龙.基于小波和自适应滤波的ECG基线漂移校正[J].计算机工程,2013,39(11):226-229. 被引量:7
  • 8HUANG N E,SHEN Z, LONG S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non - stationary time series analysis [ C ]. Proceed- ings of the Royal Society,London, 1998:903-995.
  • 9JI T Y,WU Q H. Broadband noise suppression and fea- ture identification of ECG waveforms using mathematical morphology and embedding theorem [ J ]. Computer Methods and Programs in Biomedicine,2013,112 ( 3 ) : 466-480.
  • 10IEONG C I, VAI M I, MAK P U, et al. ECG heart beat detection via mathematical morphology and quadratic spline wavelet transform [ C ]. IEEE International Con-ference on Consumer Electronics ( ICCE ), 2011 : 609- 610.

二级参考文献27

  • 1李翠微,郑崇勋,袁超伟.ECG信号的小波变换检测方法[J].中国生物医学工程学报,1995,14(1):59-66. 被引量:52
  • 2Pan J, Tompkins WJ. A real time QRS detection algorithm[ J]. IEEE Trans Biomed Eng, 1985, 32(3) :230 -236.
  • 3Afonso VX, Tompkins WJ, Nguyen TQ, et al. ECG beat detection using filter banks [ J ]. IEEE Trans Biomed Eng, 1999, 46(2) :192 -201.
  • 4Benitez D, Gaydecki PA, Zaidi A, et al. The use of the Hilbert transform in ECG signal analysis[ J]. Computers in Biology and Medicine, 2001,31(5 ) :399 - 406.
  • 5Xing Hongyan, Huang Minsong. A new QRS detection algorithm based on empirical mode decomposition [ A ]. In: The proceedings of 2nd International Conference on Bioinformatics and Biomedical Engineering[C ]. Shanghai: IEEE Engineering in Medicine and Biology Society Press, 2008. 693 -696.
  • 6Mehta SS, Lingayat NS. SVM - based algorithm for recognition of QRS complexes in Electrocardiogram[J]. IRBM, 2008, 29 (5) :310 -317.
  • 7Huang NE, Shen Zheng, Long SR, et al. The empirical mode decom-position and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc B Soc Lond, 1998,454: 903 - 995.
  • 8Flandrin P, Rilling G, Goncalves P. Emperical mode decomposition as a filter bank [ J]. IEEE Sig Proc Lett, 2004, 11(2) : 112 -114.
  • 9Mertens J, Mortara D. A new algorithm for QRS averaging.Comp in Cardiol, 1984, 3(2): 367.
  • 10Fabio B, Arthor JM, Edward LT. Cubic spline baseline estimation in ambulatory ECG recordings for the measurement of ST segment displacements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1991, 3(2) : 584.

共引文献25

同被引文献66

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部