期刊文献+

闭孔泡沫金属变形模式的有限元分析 被引量:11

Finite element analysis on deformation modes of closed-cell metallic foam
下载PDF
导出
摘要 运用有限元软件ABAQUS/Explicit模拟了三维Voronoi闭孔泡沫金属在不同的冲击速度下的变形行为。随着冲击速度的提高,得到了3种变形模式:准静态均匀模式、过渡模式和冲击模式,并以相对密度和冲击速度为坐标建立了变形模式图。引入应力均匀性指标和变形局部化指标,确定了模式转化的临界速度,并与已有的冲击速度预测公式进行了比较。根据临界速度的数值和理论结果,提出了一种确定锁定应变的方案,结果介于压实应变和完全密实应变之间。 Deformation behavior of closed-cell metallic foam under uniaxial dynamic compression was investigated using the finite element method of ABAQUS/Explicit code.The random 3D Voronoi technique was employed to construct foam specimens.Three deformation modes,namely the quasistatic homogeneous mode,the transitional mode and the shock mode,had been observed in the foam specimens with increasing of impact velocity.A deformation mode map with coordinates of relative density and impact velocity was presented for the foam considered.Two parameters,namely the stress uniformity index and the deformation localization index,were introduced to identify two critical impact velocities of mode transitions.The numerical results of critical impact velocities were compared with the predictions using the theoretical formulas from the literature.Based on the numerical and theoretical results of critical impact velocities,a scheme is suggested to determine the locking strain.It is found that the locking strain obtained from this scheme is between the densification strain and the complete densification strain.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2014年第4期464-470,共7页 Explosion and Shock Waves
基金 国家自然科学基金项目(11002140,90916026)~~
关键词 固体力学 变形模式 有限元方法 Voronoi模型 临界速度 锁定应变 solid mechanics deformation mode finite element method Voronoi model critical velocity locking strain
  • 相关文献

参考文献16

二级参考文献48

  • 1胡玲玲,余同希.惯性效应对蜂窝能量吸收性能的影响[J].兵工学报,2009,30(S2):24-27. 被引量:11
  • 2石上路,卢子兴.基于十四面体模型的开孔泡沫材料弹性模量的有限元分析[J].机械强度,2006,28(1):108-112. 被引量:21
  • 3Gibson L J, Ashby M F. Cellular solids, Structure and properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997 : 19.
  • 4Silva M J, Gibson L J. The effect of non-period microstructure and defects on the compression strength of two-dimensional cellular solids[J].International Journal of Mechanics Sciences, 1997,39:549-563.
  • 5Warren W E, Kraynik A M. Linear elastic behavior of a low-density Kelvin foam with open cells[J].Journal of Applied Mechanics, 1997,64: 787-794.
  • 6Chen C, Lu T J, Fleck N A. Effect of imperfections on the yielding of two dimensional foams[J]. Journal of the Mechanics and Physics of Solids, 1999,47:2235-2272.
  • 7Zhu H X, Hobdell J R, Windle A H. Effects of cell irregularity on the elastic properties of open-cell foams[J]. Acta Materialia, 2000,48: 4893-4900.
  • 8Zhu H X, Hobdell J R, Windle A H. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs [J]. Journal of the Mechanics and Physics of Solids, 2001,49:857-870.
  • 9Roberts A P, Garboczi E J. Elastic moduli of model random three-dimensional closed-ceU cellular solids[J]. Acta Materialia, 2001,49 : 189-197.
  • 10Roberts A P, Garboczi E J. Elastic properties of model random three-dimensional open-cell solids[J]. Journal of the Mechanics and Physics of Solids, 2002,50: 33-55.

共引文献42

同被引文献35

引证文献11

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部