期刊文献+

网络科技信息中的知识对象行为识别方法 被引量:2

Method of Knowledge Object Behavior Identify in the Scientific and Technical Information of Network
下载PDF
导出
摘要 在网络科技信息的情报价值判断中,知识对象行为具有重要的情报指示作用。在对语义图结构分析的基础上,针对不同的句法结构,设计了知识对象行为的识别规则以及逐层匹配的方法;对各层匹配结果中的指代关系进行处理,利用对象中心词和位置特征,替换匹配结果中的单个词,实现对象行为的识别;并对算法识别效果进行评测和分析,讨论其中存在的问题及未来的工作方向。 In the judgement of the intelligence value of scientific and technical information of network, knowledge object behavior plays an important role of intelligence indicating. Based on the analysis of semantic graph structure, this paper designs identification rules and layer by layer matching method of knowledge object behavior by aiming at different sytax structure. Based on the processing of coreference relation of the matching result in each layer, the paper replaces the single word of matching result by using the object headword and location characteristic, which in order to realize the identification of object behavior. The paper evaluates and analyzes the identification effect of algorithm, and discusses the existing problems and working direction in the future.
出处 《情报理论与实践》 CSSCI 北大核心 2014年第9期59-63,共5页 Information Studies:Theory & Application
基金 国家自然科学基金项目"基于语言网络的文本主题中心度计算方法研究"(项目编号:61075047) 浙江省自然科学基金项目"基于对象计算的网络科技信息情报价值判断方法研究"(项目编号:LQ14G030006)的成果
关键词 网络 科技信息 知识对象 行为识别 network scientific and technical information knowledge object behavior identify
  • 相关文献

参考文献20

  • 1http://www. whitehouse. gov/sites/default/files/uploads/Inno-vationStrategy. pdf.
  • 2http;//www. whitehouse. gov/sites/default/files/microsites/os-tp/big_data_press_release_final_2. pdf.
  • 3http: //ec. europa eu/enterprise/policies/innovation/facts-fig-ure8-analysis/innovation-scoreboard/index_en. htm.
  • 4http: //www. oecd. org/science/innovationinsciencetechnology-andindustry/mainscienceandtechnologyindicatorsrasti20122edition.htm.
  • 5LESKOVEC J, MILIC-FRAYLING N,GROBELNIK M, et al.Extracting summary sentences based on the document semanticgraph [ R]. Redmond : Microsoft Research, Microsoft Corpora-tion, 2005.
  • 6LESKOVEC J’ MILIC-FRAYLING N, GROBELNIK M. Impactof linguistic analysis on the semantic graph coverage and learn-ing of document extracts [ R]. Redmond: Microsoft Research,Microsoft Corporation, 2005.
  • 7RUSU D, DALI L, FORTUNA B,et al. Triplet extraction fromsentences [ C] //Proceedings of the 10th International Multi-conference" Information Society-IS, 2007 : 8-12.
  • 8RUSU D, FORTUNA B, GROBELNIK M, et al. Semanticgraphs derived from triplets with application in document sum-marization [J]. Informatica Journal, 2009, 33 (3).
  • 9RUSU D, FOETUNAB, MLADENIC D, et al. Document visu-alization based on semantic graphs [ C ] //Proceedings of the2009 13th International Conference Information Visualisation,Barcelona, Spain, 2009 : 292-297.
  • 10SHRESTHA S. Survey paper on “Web page content visualiza-tion0 [J]. Kathmandu University Journal of Science, Engi-neering and Technology, 2012,8 ( 1 ) : 125-133.

同被引文献33

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部