期刊文献+

Pt表面形貌对乙二醇分解机理的影响

A DFT Analysis on Ethylene Glycol Decomposition Mechanism on Pt(111) Surface
下载PDF
导出
摘要 运用广义梯度近似(GGA)的密度泛函理论(DFT)结合平板模型,研究了乙二醇在不同形貌的Pt(111)表面(包括Pt(111),Pt(111)-step,Pt(111)-double-step)的分解反应机理。结果表明,乙二醇及其分解中间体的吸附热与不同形貌表面配位数有关,配位数越低,吸附能力越强。乙二醇的脱氢反应机理也与表面形貌有关。在Pt(111)和Pt(111)-step上,先是O—H键断裂,形成HOCH2CH2O中间体,然后是C—H键断裂,形成HOCH2CHO中间体;而在Pt(111)-doublestep上先是O—H键断裂,形成HOCH2CH2O中间体,之后仍是O—H键断裂,形成OCH2CH2O中间体。 The DFT-GGA method combined with the slab model was applied to study the ethylene glycol decomposition on Pt(111)model catalysts such as Pt(111),Pt(111)-step[i.e.,removed one row of top layer from Pt(111)]and Pt(111)-double-step[that is,remove two rows of top layer and one row of second layer from Pt(111)].The calculation results show that the adsorption energy of ethylene glycol and other decomposition species depends on the coordination number of surface atom,and the low coordination number relates to the high adsorption energy.Moreover,it was found that the reaction mechanism of ethylene glycol decomposition depends on the surface morphology:On both Pt(111)and Pt(111)-step,the ethylene glycol decomposition proceeds via the initial O—H bond scission,forming HOCH2CH2O intermediate,and following C—H bond cleavage,forming HOCH2CHO;While on the Pt(111)-double-step surface,the reaction mechanism involves the initial O-H bond scission,forming HOCH2CH2O,and following second O—H bond cleavage,forming OCH2CH2O intermediate.
作者 杨博 庞先勇
出处 《太原理工大学学报》 CAS 北大核心 2014年第4期463-467,共5页 Journal of Taiyuan University of Technology
基金 山西省自然科学基金资助项目(2013011012-8) 国家自然科学基金资助项目(21176167)
关键词 乙二醇分解 反应机理 PT 表面形貌 密度泛函计算 平板模型 Ethylene glycol decomposition Reaction mechanism Pt Surface morphology Density functional calculations slab model
  • 相关文献

参考文献16

  • 1Greeley J,Mavrikakis M.A First-principles study of methanol decomposition on Pt(111)[J].American Chemical Society,2002,124(24):7193-7201.
  • 2Skoplyak O,Barteau M A,Chen J G.Ethanol and ethylene glycol on Ni/Pt(111)bimetallic surfaces:A DFT and HREELS study[J].Surface Science,2008,602:3578-3587.
  • 3Salciccioli M,Yu W.Differentiation of O-H and C-H bond scission mechanisms of ethylene glycol on Pt and Ni/Pt using theory and isotopic labeling experiments[J].American Chemical Society,2011,133:7996-8004.
  • 4Brown N F,Barteau M A.Carbon-Halogen bond scission and rearrangement of beta-halohydrins on the Rh(111)surface[J].Physical Chemistry,1994,98:12737-12745.
  • 5Capote A J,Madix R J.Oxygen-hydrogen and carbon-hydrogen bond activation in ethylene glycol by atomic oxygen on silver(110):heterometallacycle formation and selective dehydrogenation to glyoxal[J].American Chemical Society,1989,111:3570-3577.
  • 6Huo C F,Li Y W.Formation of CHxSpecies from CO dissociation on double-stepped Co(0001):exploring Fischer-Tropsch mechanism[J].Physical Chemistry C,2008,112:14108-14116.
  • 7Van Santen R A.Complementary structure sensitive and insensitive catalytic relationships[J].Accounts of Chemical Research,2009,42:57-66.
  • 8Perdew J P,Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Physical Review B,1992,45:13244-13249.
  • 9Blchl P E.Projector augmented-wave method[J].Physical Review B,1994,50:17953-17979.
  • 10Kresse G,Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B,1999,59:1758-1775.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部