期刊文献+

径向基函数神经网络逼近空调管路温漂趋势的研究

Research on Temperature Trends of Air Conditioner Pipes Approximated by the Radial Basis Function Neural Network
下载PDF
导出
摘要 针对空调管路的应变测试数据会随环境温度而产生漂移的现象,根据应变电测法,提出了基于径向基函数(RBF)神经网络拟合逼近管路真实应变值的方法,即结合正则化正交最小二乘法,逼近现实中由温度引起的漂移,间接求出空调管路较为真实的交变应变值.实验结果表明该方法是可靠的. In light of test data of air conditioning pipes drifting with environmental temperature, based on the strain measuring method, an approach based on the RBF neural network is proposed to fit the true strain values of pipes. The method adopts the regularization orthogonal least squares method, approaches the reality drift caused by temperature change, and derives indirectly more real alternating strain value. Experimental results show that the method is reliable.
出处 《五邑大学学报(自然科学版)》 CAS 2014年第3期55-60,共6页 Journal of Wuyi University(Natural Science Edition)
关键词 应变电测法 径向基函数神经网络 正则化 最小二乘法 strain measurement methods radial basis function neural network regularization least squares method
  • 相关文献

参考文献7

二级参考文献14

共引文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部