期刊文献+

广义Cox模型下的逐步扩大域流相关问题研究(英文)

Progressive Filtration Enlargement in the Generalized Cox Model
下载PDF
导出
摘要 在本文中,我们主要讨论了广义Cox模型的信息流扩大问题.假设在市场中有两类投资者,第一类投资者拥有市场信息F,这里F由一个d维的布朗运动W=(W_1,…,W_d)′和一个可积随机测度μ(du,dy)驱动;而第二类投资者具有扩大的信息流G,这里G假设是由信息流F和广义Cox的模型刻画的违约信息流生成.我们建立和刻画了广义Cox模型并且求给出它的主要性质包括生存过程和违约条件密度.与Cox模型显著区别的是,如果违约由广义Cox模型模型刻画,与Cox模型平凡的结果不同的是,F鞅的G-分解更复杂和具有一般性. We assume that there exist two kinds of investors in the market, the first kind investors, have the market information F, which is given by a d-dimensional Brownian motion W = (W1,……, Wd) as well as an integer-valued random measure μ(du, dy). The second kind, however, have the information τ from the progressive enlargement filtration of F by the default time modeled by the so called the generalized Cox model. We characterize this model with a triplet and describe main properties such as the survival process and the conditional density of τ. The G-decomposition of a F-martingale is not trivial in contrast to the class Cox model.
出处 《应用概率统计》 CSCD 北大核心 2014年第3期267-278,共12页 Chinese Journal of Applied Probability and Statistics
基金 supported by the National Natural Science Foundation of China(11171215) National NaturalScience of Shanghai(13ZR1422000) Yang Cai Project(YC-XK-13106)
关键词 信息流扩大 标准分解 可料投影 广义Cox模型 特征. Enlargement of filtration, standard decomposition, predictable projection, gen-eralized Cox model, features.
  • 相关文献

参考文献12

  • 1E1 Karoui, N., Jeanblanc, M. and Jiao, Y., What happens after a default: the conditional density approach, Stochastic Processes and their Applications, 120(7)(2010): 1011-1032.
  • 2Eyraud-Loisel, A., An overview of some financial models using BSDE with enlarged filtrations, Work- shop: Enlargement of Filtrations and Applications to Finance and Insurance, Jena (Germany): May 31st - June 4th, 2010.
  • 3Jacod, J., Grossissement initial, hypothese (H') et theoreme de Girsanov, in Grossissements de Fil- trations: Exemples et Applications (Editors: Jeulin, T. and or, M.): Lecture Notes in Mathematics: Vol. 1118, 15-35, Berlin, Heidelberg: Springer-Verlag, 1985.
  • 4Jacod, J. andShiryaev, A.N., Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987.
  • 5Jeanblanc, M., Yor, M. and Chesney, M., Mathematical Methods for Financial Markets, Springer- Verlag, London, 2009.
  • 6Jeanblanc, M. and Le Cam, Y., Progressive enlargement of filtrations with initial times, Stochastic Processes and their Applications, 119(8) (2009): 2523-2543.
  • 7Jeanblanc, M. and Song, S., An explicit model of default time with given survival probability, S- tochastic Processes and their Applications, 121(8) (2011): 1678-1704.
  • 8Jeulin, T., Semi-Martingales et Grossissement d'une Filtration, Lecture Notes in Mathematics: Vol. 833, Berlin, Heidelberg, New York: Springer-Verlag, 1980.
  • 9Jiao, Y. and Pham, H., Optimal investment with counterparty risk: a defaultdensity approach, To appear in Finance and Stochastics, 2009.
  • 10Lando, D., On Cox processes and credit risky securities, Review o] Derivatives Research, 2(2-3) (1998): 99-120.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部