期刊文献+

一种基于细菌觅食算法的机械手臂控制器设计 被引量:1

Design of Controller for Robot Manipulators Using Bacterial Foraging Optimization Algorithm
下载PDF
导出
摘要 针对机械臂控制系统需可靠、快速、准确跟踪设定值轨迹的要求,通过研究机械臂控制系统的非线性动力学模型,提出1种基于细菌觅食优化算法(BFO)优化PID控制器参数的控制方案。设计采用细菌觅食算法求解在线优化PID参数的流程,用于机器人手臂的跟踪控制。为更有效地考察机械手臂系统的跟踪控制性能,设定2个关节的期望轨迹分别为正弦和余弦函数。仿真结果表明,与传统PID方法相比,基于BFO算法优化的控制方案具有更优越的控制品质和较强的抑制干扰能力,能有效提高机械臂跟踪控制的快速性和准确性。 To meet the requirements of reliability,high-speed and tracking set point trajectory accurately,by means of examining nonlinear dynamics model of the robot control system and analyzing the strong coupling,we proposed a control scheme based on bacterial foraging optimization (BFO) which is designed to optimize the detailed process of PID parameters online,which is new application for tracking the control of robot manipulators.In order to investigate the tracking control performance of robot manipulators system effectively,the desired trajectory of the two joints are set to the sine and cosine functions.The simulation results show that BFO algorithm has better control quality and stronger anti-jamming capability.And it can effectively improve the speed and accuracy of manipulator tracking control compared with the traditional PID method.
出处 《安徽工业大学学报(自然科学版)》 CAS 2014年第3期290-294,共5页 Journal of Anhui University of Technology(Natural Science)
基金 安徽省教育厅自然科学基金重点项目(KJ2013A054)
关键词 细菌觅食优化算法 机械臂 跟踪控制 BFO algorithm robot manipulator tracking control
  • 相关文献

参考文献6

二级参考文献54

  • 1孙明轩,陈阳泉,黄宝健.非线性时滞系统的高阶迭代学习控制[J].自动化学报,1994,20(3):360-365. 被引量:11
  • 2马荣芳,孙弘,尹凤.转炉烟气净化及煤气回收系统中炉口微差压的自动控制[J].电气传动,2006,36(5):53-55. 被引量:15
  • 3Lasseter R, Abbas A, Mamay C. Integration of distributed energy resources: the CERTS microgrid concept[R]. USA: California Energy Commission, 2003.
  • 4Hatziargyriou N, Asano H, Iravani R, et al. Microgrids[J]. IEEE Power and Energy Magazine, 2007, 5(4): 78-94.
  • 5Venkataramanan G, Mamay C. A larger role for microgrids[J]. IEEE Power and Energy Magazine , 2008,6(3): 78-82.
  • 6Kroposki B, Lasseter R, Ise T. Making microgrids work[J]. IEEE Power and Energy Magazine, 2008, 6(3): 40-53.
  • 7Hassan N, Robert H. Distributed generation interface to the CERTS microgrid[J]. IEEE Trans. on Power Delivery, 2009, 24(2): 1598-1608.
  • 8Windpower B. BWC EXCEL wind atrbine[EB/OL]. 2010[2010-8-20]. http://www.bergey.com/Products/Excel. html.
  • 9Gavanidou E, Bakirtzis A. Design of a stand alone system with renewable energy sources using trade off methods [J]. IEEE Trans. on Energy Conversion, 1992, 7(1): 42-48.
  • 10Soto W, Klein S, Beckman W. Improvement and validation of a model for photovoltaic array performance solar energy[J]. Solar Energy, 2006, 80(1): 78-88.

共引文献230

同被引文献11

  • 1LAVALLE S. Robotics and Automation Magazine[M]. Boca Raton: CRC Press, 2011:108-118.
  • 2DUNLAP D, COLLINS E G, YU W. Motion planning for steep hill climbing[C].IEEE International Conference on Robotics andAutomation. Shanghai: ICRA, 2011: 707-714.
  • 3KARAMAN S, FRAZZOLI E. Optimal kinodynamic motion planning using incremental sampling- based method[C].IEEEConference on Decision and Control. Atlanta, Georgia: CDC, 2010:7681-7687.
  • 4PLAKU E, KAVRAKI L E, VARDI M Y. Motion planning with dynamic by synergistic combination of layers of planning[J].IEEE Transaction on Robotics, 2010, 26(3):469-482.
  • 5LAVALLE S M, KUFFNER J J. Randomized kinodynamic planning[J]. International Journal of Robotics Research, 2001, 20(5):378-400.
  • 6DUNLAP D D, CALDWELL C V, COLLIONS E G. Motion Planning for Mobile Robots Via Sampling-based Model PredictiveOptimization[M]. INTECH Open Access Publisher, 2011:24-112.
  • 7DIANKOV R, KUFFNER J. Randomized statistical path planning[C].Proceedings of IEEE International Conference onIntelligent Robots and Systems. Boca Raton: CRC Press, 2007:1-6.
  • 8KOENIG S, LIKHACHEV M, FURCY D. Lifelong planning A*[J]. Artificial Intelligence, 2004, 155(1):93-146.
  • 9LAVALLE S M. Planning Algorithms[M]. Cambridge: Cambridge University Press, 2006.
  • 10XU C Q, MING A. Optimal Trajectory Generation for Manipulator with Strong Nonlinear Constraints and Multiple BoundaryConditions[C].Proceedings of IEEE International Conference on Robotics and Biomimetics. [s.l.]: ROBIO, 2004:192-197.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部